
Expertus: A Generator Approach to Automate Performance Testing in IaaS Clouds

Deepal Jayasinghe, Galen Swint, Simon Malkowski, Jack Li, Qingyang Wang, Junhee Park and Calton Pu.

Center for Experimental Research in Computer Systems, Georgia Institute of Technology
266 Ferst Drive, Atlanta, GA 30332-0765, USA.

{deepal, swintgs, zmon, jack.li, qywang, jhpark, calton}@cc.gatech.edu

Abstract—Cloud computing is an emerging technology
paradigm that revolutionizes the computing landscape by provid-
ing on-demand delivery of software, platform, and infrastructure
over the Internet. Yet, architecting, deploying, and configuring
enterprise applications to run well on modern clouds remains
a challenge due to associated complexities and non-trivial im-
plications. The natural and presumably unbiased approach to
these questions is thorough testing before moving applications
to production settings. However, thorough testing of enterprise
applications on modern clouds is cumbersome and error-prone
due to a large number of relevant scenarios and difficulties in
testing process. We address some of these challenges through
Expertus—a flexible code generation framework for automated
performance testing of distributed applications in Infrastructure
as a Service (IaaS) clouds. Expertus uses a multi-pass compiler
approach and leverages template-driven code generation to
modularly incorporate different software applications on IaaS
clouds. Expertus automatically handles complex configuration
dependencies of software applications and significantly reduces
human errors associated with manual approaches for software
configuration and testing. To date, Expertus has been used to
study three distributed applications on five IaaS clouds with over
10,000 different hardware, software, and virtualization configu-
rations. The flexibility and extensibility of Expertus and our own
experience on using it shows that new clouds, applications, and
software packages can easily be incorporated.

Keywords-Aspect, Automation, Clouds, Code Generation, Dat-
acenter, EC2, Emulab, IaaS, Multi-Tier, Open Cirrus, Perfor-
mance, Scalability, Testing, Template.

I. INTRODUCTION

Exhaustive application configuration testing on Infrastructure

as a Service (IaaS) clouds is motivated by three key observa-

tions. First, and perhaps least surprising, the performance of

two identical configurations can be vastly different on two

different platforms [27]. In fact, we have observed that a

particular best practice (i.e., highest performance) configura-

tion can become the worst-performing configuration by virtue

of nothing more than a change in platform (e.g., migrat-

ing the RUBBoS application from Emulab [11] to Amazon

EC2 [16]). Second, the same applications can exhibit non-

trivial performance characteristics due to a combination of

complicating factors even in a single platform [28]. Third,

application performance can vary unexpectedly with changes

to a relatively small set of factors. Such factors may include

garbage collection, network driver overhead, and context-

switching overhead and that are often subtle and not directly

controllable by users.

While manual and ad hoc (i.e., partially scripted) ap-

proaches for application testing are being used heavily in

traditional data centers, modern clouds require adoption of

automated testing strategies to mitigate cloud complexities.

Automation removes the error prone and cumbersome involve-

ment of human testers, reduces the burden of configuring and

testing distributed applications, and accelerates the process of

reliable applications testing. One way to build an automa-

tion framework is through code generation, yet building a

flexible and extensible code generator for distributed systems

remains a significant research challenge. Environmental and

design changes pressure the input language to change and

evolve. Similarly, the generated code (output) often needs

customization to a range of software, cloud and operating sys-

tems, also typically due to unyielding market and technology

evolution. This constant evolutionary pressure of input and

output formats has so far limited the practical life span of

code generators developed for distributed system software.

In this paper we discuss Expertus, a code generation frame-

work that we have developed to automate the testing of large

scale distributed applications in IaaS cloud. More precisely,

Expertus is designed to automate performance and scalability

testings in cloud platforms. Expertus was created by extending

our previous work on code generation for Infopipes [21].

Expertus takes an experiment specification (application pa-

rameters, target cloud, and test scenarios) as an input and

creates the resource (e.g., scripts) to fully automate the testing

process (i.e., deployment, configuration, execution and data

collection). Expertus is designed as a multi-pass compiler

which leverages template-driven code generation to modularly

incorporate different software applications and clouds. As

documented by our results, the flexibility and extensibility of

Expertus have enabled cloud experiments at a scale that is

beyond manual test execution.

Expertus makes significant strides towards realizing flexible

and scalable application testing for today’s complex cloud

environments. For example, we have used Expertus in over 500

different hardware configurations and over 10,000 different

software configurations. Concretely, Expertus was used to test

software applications deployed on over 100,000 computing

nodes in five different cloud environments (i.e., Emulab, Ama-

zon EC2, Open Cirrus [14], Georgia Tech university cluster,

and Wipro [15] private cloud) using three representative appli-

cations (i.e., RUBBoS [12], RUBiS [13], and Cloudstone [7]).

As more cloud offerings become available, we expect the

number and variety of test scenarios to increase by another

order of magnitude with our current Expertus version.

Expertus is designed for flexibility and extensibility. A

template developer can extend Expertus to support new clouds,

applications, and software packages with only a few tem-

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.98

115

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.98

115



plate line changes. For example, with 8.21% of template

line changes, we were able to support Amazon EC2 (here

after EC2) once we had support for the Emulab cloud. This

8.21% caused a 25.35% change in the generated code for an

application with 18 compute nodes. Similarly, 9.33% template

lines required to support Open Cirrus cloud, but, the changes to

the generated code were 26.91%. Switching from the RUBBoS

to the RUBiS required only a 5.66% template change.

Expertus is very efficient when carrying out many repetitive

or slightly different experiments. A user can change the spec-

ification from one experiments to another by switching plat-

form settings, software settings, and computing clouds with

minimum effort. For example, with only one line change (i.e.,

<param name=‘‘platform’’ value=‘‘EC2’’/> )

and by changing the IP address of the Emulab’s experiment

specification, it is possible to generate scripts to automate

the same Emulab experiment on EC2. Similarly, automated

scripts can be generated for a new RUBiS experiment from a

preexisting RUBBoS experiment specification with less than

20 line modifications.

The remainder of this paper is structured as follows. In Sec-

tion II we discuss distributed software testing and challenges.

We present the code generation framework in Section III.

We quantify the significance of our approach and illustrate

its feasibility in Section IV. Finally, we provide a discussion

of related state of the art approaches in Section V, and we

conclude the paper with Section VI.

II. DISTRIBUTED TESTING AND CHALLENGES

Experiment challenges: Performance testing for enterprise

applications consists of multiple closely related scenarios by

varying a few configurable (preferably one) parameters at a

time. For example, to find the maximum achievable throughput

for an e-commerce application on EC2 may consist of multiple

experiments where the difference between any two would be

the number of concurrent client workloads (e.g., 1000 users

vs. 2000 users). In fact, two different software or hardware

configurations may produce the same throughput [27], [28],

thus increasing the testable configuration space. Also, com-

ponents of a distributed application can interact in complex

ways, yielding a virtually infinite number of possible states.

In reality, evaluating all possible configurations is practically

infeasible for a vast majority of systems. Thus, the key

challenge is to maximize the amount of configurations that can

be tested with limited time and human resource constraints.

Application challenges: In distributed software testing the

applications should start efficiently and in a provably correct

order by simultaneously enforcing serialization constraints

and leveraging the distributed system’s inherent parallelism.

This process may be trivial for applications with a fewer

nodes; in contrast, for applications with many nodes and

multiple application components (e.g., multi-tier applications),

the process becomes challenging mainly due to complex de-

pendencies (e.g., database URL, load balancers). For example,

a web application with Apache as the load balancer and

Tomcat as the application server requires modification to the

Apache configuration whenever application servers are added

or removed. Similarly, changing the DBMS causes to change

configurations in application server (e.g., JDBC, URL).

Cloud challenges: Testing software systems in today’s

cloud environments introduces many new challenges; first, se-

lecting the most appropriate cloud from many cloud offerings

is a non-trivial task; second, migrating an application between

two clouds is a complex, time consuming and error prone task;

third, communication, coordination, synchronization, monitor-

ing and complete management challenges; lastly, the dynamic

nature of the cloud introduces extra complexity. For example

in a traditional data center, the IP address of a given server

is assumed to be constant indefinitely; hence, once an appli-

cation is deployed with pre-configured IP addresses then that

configuration can be used for multiple test cases; however, in

computing clouds, whenever we rent new computing instances,

they come with a fresh set of IP addresses. Thus, if we want

to run multiple test cases, we would need to modify the

configuration scripts after each test case to account for the

new IPs which is a non-trivial task for large applications.

III. EXPERTUS

Expertus is designed to automate large scale distributed ex-

periment studies in IaaS clouds with the goal of addressing

three challenges discussed in Section II. We tackle experiment

challenges by automating complete experiment process i.e.,

application deployment and configuration, experiment execu-

tion, data collection, and data analysis. The cornerstone of

experiment automation is the code generation, which generates

all the necessary resources for automation process. Addressing

application challenges, and to handle complex application

dependencies; a clear separation of different levels (e.g., appli-

cation vs. platform) and types (e.g., deployment vs. runtime) of

dependencies is needed. Our solution to this problem is multi-

stage code generation, where one type/level of dependency is

handled at one stage. To address platform challenges and other

cross cutting requirements (e.g., monitoring), the generated

code needs to be modular i.e., a developer should be able

to make controlled changes to the code. The modularity

is achieved by using aspect oriented programming (AOP)

techniques inside the code generator.

A. Flexibility and Extensibility through XML and XSLT

Expertus is architectured to operate on top of XML and XSLT.

Use of XML provides the code generator a high degree of

extensibility. This stems from XML’s simple, well-defined

syntax requirement and ability to accept arbitrary new tags

thereby bypassing the overhead encountered when managing

both XSLT templates and AOP. For example a template can

add an arbitrary element to the intermediate XML; however,

unless the processing code is written to process that new tag,

the newly added tag remains untouched.

XSLT transformation is the process of converting an XML

document into another document through the use of XSL. Typ-

ically, XSLT converts an XML document into another XML

116116



document (e.g., HTML) or any other type of document. Ex-

pertus consists of two types of templates namely Resource
templates and Aspect templates. Former is used to

generate application/platform independent part of a resource

and latter is used to modify (weave) the generated resource

for the target application/platform (e.g., Emulab vs. EC2).

B. Multi-Stage Code Generation

The code generator adopts a compiler approach of multiple

serial transformation stages. The intuition is to have better

extensibility and flexibility by dividing the large problem

into smaller pieces and processing them one at a time. For

example, it processes the application related transformations

at one stage and cloud related transformations at another

stage. As shown in Figure 1, at each stage Expertus takes an

XML document and produces another XML document through

XSLT transformation. Expertus treats the first and last stage

differently compared to the rest; in the first stage, it takes the

experiment specification as the input and in the final stage it

generates automation resources to the file system (in lieu of

an intermediate XML).

The number of stages in the transformation phases is

determined by the experiment, application, software stack,

operating system, and cloud. For an example, if RUBBoS

application is configured with Apache, Tomcat, and MySQL

running on Fedora in EC2, then the transformation phase

consists of 8 stages. The first stage is to transform the

specification to a domain specific document. Then, there is

a unique transformation stage for each software component,

application, operating system, and cloud (i.e., Apache, Tomcat,

MySQL, Fedora and EC2). The order of different stages is

determined by dependencies between different components

(Tomcat stage appears before Apache, if latter depends on

former). The final stage is to transform intermediate XML to

generated code.

At each stage Expertus uses the intermediate XML doc-

ument created from the previous stage as the input to the

current stage. It uses the intermediate XML file to retrieve

the names of the templates that are needed for the current

stage and transforms the intermediate XML document, which

then creates another XML document (Transformed XML in

Figure 2). If needed, AOP pointcuts will be added to the

intermediate XML during the transformation phase. Conse-

quently, Aspect Weaver is used to weave such pointcuts .

Aspect Weaver processes the pointcuts through Aspect
templates and creates the woven XML (Figure 2). Finally,

the woven file is written to the file system through the file

writer. More precisely, the automation scripts are written to

the file system during the final stage of the pipeline and at

each other stage it generates an intermediate XML and calls

the next stage in the pipeline. The complete process in a single

stage is shown in Figure 2.

Figure 3 illustrates how code generation works in practice

and shows code snippets from an XSLT template, an inter-

mediate XML and a generated script. The highlighted lines

in the XSLT template indicate parameter names it should

Fig. 1. Multi-Stage Code Generation Process

Fig. 2. Transformations Steps within a Single Stage

use from the XML document to create the output. The

XML file is highlighted with the corresponding parameter

values, and those parameters can either come from user inputs

(specification) or generated from a previous stage by another

XSLT template. Finally, the generated script is also highlighted

with parameter values. As illustrated in the figure, the XSLT

template has extracted the values from intermediate XML and

created the output XML file. We use this simple logic to

generate resources to automate complex test scenarios.

C. Modularity

One of the key challenges in experiment automation is to

handle the variances and continuous evolution in applica-

tions, software packages, operating systems, and clouds. For

example, in Emulab, a user can communicate between two

nodes by typing SSH node2; in contrast, in EC2 it has

to be SSH -i gsg-keypair node2. Similarly, for older

Apache versions mod_jk has to be placed in jk/native2,

however newer versions require it to be in jk/. Likewise,

when doing performance testing, crosscutting features like

monitoring and logging are important factors and may need to

change from one experiment to another. Thus, to handle vari-

ances and crosscutting features, Expertus itself has to provide

better modularization. Expertus achieves this modularization

by leveraging AOP techniques.

The Resource templates are created by identifying

output variances (e.g., SSH communication) and crosscut-

ting features. Each identified variance is embedded into

Resource templates as pointcuts (namespace qual-

ified XML elements). Aspect templates are created by

embedding the advices (code that is run at the joint

points) which are needed to support the pointcuts. At the

transformation phase Resource templates add joint
points (well defined points in the execution flow) to

117117



XSLT Template 
..... 
cd <xsl:value-of select="//params/env/param[@name='OUTPUT_HOME']/@value"/> 
source set_elba_env.sh 
echo "  INSTALLING RUBBOS on $HOSTNAME" 
 
mkdir -p <xsl:value-of 
select="//params/env/param[@name='RUBBOS_TOP']/@value"/> 
# install RUBBoS 
tar xzf <xsl:value-of 
select="//params/env/param[@name='SOFTWARE_HOME']/@value"/>/<xsl:value-of 
select="//params/env/param[@name='RUBBOS_TARBALL']/@value"/> --
directory=<xsl:value-of 
select="//params/env/param[@name='RUBBOS_TOP']/@value"/> 
 
..... 
make 
sudo make install 
echo "  DONE INSTALLING RUBBOS on $HOSTNAME" 

Intermediate XML 

<xtbl name="Rubbos" version="0.1"> 
 <instances><params><env> 
  <param name="OUTPUT_HOME" value="/opt/rubbos/output"/> 
  <param name="SOFTWARE_HOME" value="/opt/softwares"/> 
  <param name="RUBBOS_TOP" value="/mnt/rubbos"/> 
  <param name="RUBBOS_TARBALL " value="RUBBoS-servlets.tar.gz"/> 
  <param name="MYSQL_PORT" value="3313"/> 
  ..... 
<env><params> 
<tomcat-conf> 
  <param name="maxThreads" value="330"/> 
  ..... 
</tomcat-conf> 
 
<instance name="BENCHMARK" type="benchmark_server"> 
   ..... 
</instance> 

Generated Script 
..... 
cd /opt/rubbos/output  
source set_elba_env.sh 
echo "  INSTALLING RUBBOS on $HOSTNAME" 
 
mkdir -p /mnt/rubbos  
# install RUBBoS 
tar xzf /opt/softwares/RUBBoS-servlets.tar.gz --directory=/mnt/rubbos  
..... 
make 
sudo make install 
echo "  DONE INSTALLING RUBBOS on $HOSTNAME" 

Fig. 3. Generating Output/Intermediate XML with XSLT Transformation

the intermediate XML and at the weaving phase Aspect
templates transform intermediate XML into woven XML

by applying correct advices. If new pointcuts are

needed we can easily modify the Resource templates
and add (or change) the Aspect templates to have the

corresponding logic to process the new crosscutting features.

A simple aspect weaving scenario is illustrated in Figure 4,

where a cloud specific aspect template is used to generate

a script to have different SSH communication for EC2 and

Emulab. In the figure, the XSLT template is highlighted

with the pointcuts, intermediate XML is highlighted to

illustrate the joint points, and finally woven code with

applied advice is highlighted for EC2 and Emulab.

D. Experiment Automation

Here we provide a brief overview to experiment automation

with Expertus. The automation process is illustrated in Fig-

ure 5, and brief description about each item is given below:

1) Create experiment specification with the application, soft-

ware packages, cloud and experiments. This includes

XSLT Template 
..... 
tar xzf <xsl:value-of 
select="//params/env/param[@name='SOFTWARE_HOME']/@value"/>/<xsl:value-of 
select="//params/env/param[@name='JAVA_TARBALL']/@value"/> --
directory=<xsl:value-of select="//params/env/param[@name=' RUBBOS_TOP 
']/@value"/> 
<esl:add-aspect name="ssh" xmlns:esl="http://expertus.cc.gatech.edu" /> 

Intermediate XML 

.... 
tar xvf /opt/software/jdk1.5.tar.gz –directory=/mnt/rubbos 
<esl:add-aspect name="ssh" xmlns:esl="http://expertus.cc.gatech.edu" /> 

Woven XML For EC2 
..... 
tar xvf /opt/software/jdk1.5.tar.gz –directory=/mnt/rubbos 
ssh –i gsg-keypair ec2-184-73-86-137.compute-1.amazonaws.com 

Woven XML For Emulab 

..... 
tar xvf /opt/software/jdk1.5.tar.gz –directory=/mnt/rubbos 
ssh node2.expertus.emulab.net 

Fig. 4. Handling Cloud Variances through Aspect weaving

Fig. 5. Automated Testing Process with Expertus

complex system dependencies and semantics of the ap-

plication (components, # of nodes, parameters), cloud

(e.g., URLs, user name, password, key-pair, node types),

software (e.g., thread pool, maxClients), and experiments

(e.g., type, load configurations).

2) Use Expertus and generate scripts. To start the experi-

ments the user remotely connects via (SSH) to the control

node and executes the Main script. The Main script uses

other scripts and drives the complete automation which

in fact consists of multiple stages.

3) Platform configuration sets up the target cloud this may

include starting and configuring computing instances,

mounting the file systems, creating users, setting user

permissions and installing the operating system libraries.

4) Application deployment is to deploy the target application

on the configured cloud (e.g., downloading/copying the

installation packages).

5) Enterprise systems are inherently complex due to compo-

nent dependencies, so application configuration is needed

to correctly configure them.

6) Main script runs the test plan (6), which in fact consists

118118



of multiple iterations. In order to produce consistent and

reproducible results, all the dirty data from previous test

cases have to be removed before starting a new one.

7) Upload the resource monitoring and performance data to

the data warehouse.

IV. EXPERIENCES

We have been using Expertus extensively and actively to

perform a large number of experiments with various configura-

tions; through these, we have thoroughly tested our framework

and improved it to have better usability, extensibility and

flexibility. In this section we demonstrate our experiences

of using Expertus on experiment automation, supporting new

clouds, new application and new software packages.

A. Usability of the Tool

Here we look at how quickly a user can change an existing

specification to run the same experiment with different set-

tings (e.g., MySQL Cluster [10] vs. C-JDBC [22]), the same

experiment on different clouds (e.g., Emulab vs. EC2), the

same experiment with different numbers of nodes (e.g., two

vs. four app servers), or entirely different applications (e.g.,

RUBBoS vs. Cloudstone).

In our analysis, we created a specification (say a.xml) to

run the RUBBoS application on Emulab with a total of 16

nodes and generated automated resources through Expertus.

We then changed a.xml to generate automated scripts for

EC2 which required only a single line change (i.e., <param
name=‘‘platform’’ value=‘‘EC2’’/> ) in a.xml
and a modification of the IP address; even though the lines

changed in the configuration file is small, the changes to

the generated code is non-trivial and significantly larger.

Our results are illustrated in Figure 6(a). We followed the

same procedure and modified a.xml to change the database

middleware from C-JDBC to MySQL Cluster. This change re-

quired only 36 lines (mostly MySQL Cluster specific settings),

but, as shown in Figure 6(a) the differences in generated code

were huge. Similarly, with 4 lines changes to a.xml, we were

able to move from 2 to 8 Application servers. Furthermore,

with only 52 template line changes we were able to extend

the support from RUBBoS to Cloudstone.

B. Generated Script Types and Magnitude

The biggest advantage of our approach becomes visible when

automating experiments for complex applications. The amount

of resources being generated depends on the application (e.g.,

RUBBoS, RuBiS), software packages (e.g., Tomcat, JBOSS),

deployment platform (e.g., Emulab, EC2), number of experi-

ments, number of servers, and number of configuration param-

eters. To show the significance of the generated code, six dif-

ferent hardware configurations (on Emulab) were selected and

counted the number of lines generated for each configuration.

Our results are shown in Figure 6(b); as shown in the figure,

when the number of nodes becomes larger the size of the

generated code becomes very significant as does the difference

between the generated code. Magnitude of generated code

implies two factors: first, it shows the effectiveness of our

approach, and second, it shows the difficulties of manual

approaches. For example, to perform an experiment with 43

nodes requires around 15K lines of shell scripts and writing

all of those manually is a non-trivial task.

C. Richness of the Tool

Richness is considered in two dimensions: 1) magnitude of

completed experiments; 2) amount of different software pack-

ages, clouds, and applications it supports. Expertus has been

used over three years to conduct a large number of experiments

spanning five clouds (Emulab, EC2, Open Cirrus, Wipro, and

Elba), three applications (RUBBoS, RUBiS, and Cloudstone),

five database management systems (C-JDBC, MySQL Cluster,

MySQL, PostgreSQL, Oracle), various resource monitoring

tools (dstat, sar, vmstat), and different types and numbers of

nodes. A high level summary of supported software packages,

platforms, and applications are shown in Table I with the

number of template lines for each item.

TABLE I
SUPPORTED SOFTWARE PACKAGES, CLOUDS AND APPLICATIONS

Platform Application

Type E
C

2

E
m

u
la

b

O
p
en

C
ir

ru
s

E
lb

a

W
ip

ro

R
U

B
B

o
S

R
U

B
iS

C
lo

u
d
st

o
n
e

Apache HTTPd
√ √ √ √ √ √ √ √

Tomcat
√ √ √ √ √ √ √ √

MySQL
√ √

-
√

-
√ √ √

MySQL Cluster
√ √ √

-
√ √

-
√

C-JDBC
√ √

-
√

-
√ √

-

Postgres -
√

-
√

-
√ √

-

Sequoia -
√

-
√

-
√

- -

PHP
√ √ √ √ √

- -
√

JOnAS -
√

- - - -
√

-

Core
√ √ √ √ √ √ √ √

Table II provides a high level summary (only the results we

used for our publications) of different experiments performed

using RUBBoS, RUBiS, and Cloudstone applications. An

experiment refers to an execution of a particular workload

against a combination of hardware and software configura-

tions. In the table, nodes refer to the total number of machines

we have used during our experiments. We calculated the

number of nodes by multiplying number of experiments by

the number of nodes for each experiment. Configurations mean

the number of different software and hardware configurations

that have been studied. Experiments per week is to give an

idea of average number of experiments executed in one week.

Typically, an experiment execution takes one hour which is

the aggregated duration of: reset time, start time, sleeping

time, ramp-up time, running time, ramp-down time, stop time,

and data copy time. Hence, as an example in Eumlab we

have conducted approximately 132 hours of experiments per

week. Finally, human efforts refers to the actual human time

spent on experiment configuration (i.e., creating or modifying

experiment configuration file). Hence, as shown in the table,

our approach significantly reduces the required human efforts

and helps to explore configuration space quickly.

119119



(a) # Changes: Specification vs. Generated (b) #Nodes vs. # Lines generated (c) RUBBoS To RUBiS

Fig. 6. (a) # Lines changed in experiment specification vs. generated code, when changing cloud, database, application and # app servers; (b) Magnitude of
generated code when increasing the # nodes in the experiment; (c) #Lines (template) changed for adding a new application(RUBBoS to RUBiS)

(a) Adding New Clouds (b) Adding New Applications (c) Adding New Database

Fig. 7. Template Line Changes: (a) Moving from Emulab to EC2 and Open Cirrus (figure shows total # lines for Emulab); (b) Supporting CloudStone from
RUBBoS; (c) Moving from C-JDBC to MySQL cluster

(a) Adding New Clouds (b) Adding New Applications (c) Adding New Database

Fig. 8. Changes to Generated Code: (a) Emulab to EC2 and OpenCirrus; (b) RUBBoS and CloudStone; (c) C-JDBC and MySQL Cluster

TABLE II
NUMBER OF TEST SCENARIOS PERFORMED WITH EXPERTUS

Type Emulab EC2 Open Cirrus Elba Wipro

Experiments 9215 1436 480 3567 120

Nodes 102687 25848 4987 9863 430

Configurations 392 86 28 163 8

Experiments Per Week 132 34 120 77 14

Human Effort (in minutes) 87 110 44 47 51

D. Extensibility and Flexibility

1) Supporting New Clouds: Our approach is fully realized

when trying to support new clouds; we can use existing

templates and only implement the absolutely necessary pieces,

which is usually a quick and easy process. Traditionally, using

manual approaches to support new clouds means writing a

set of scripts to deploy, configure, execute the test cases,

and finally to collect the data, which can be a cumbersome

and tedious task. Here, we show the extensibility of Expertus

by counting the amount of changes we performed to support

RUBBoS application on EC2 and Open Cirrus once the tool

already has support for RUBBoS on Emulab. Not surprisingly,

we observed many differences among the three clouds that

make migrating applications from one cloud to another a non-

trivial task.

To get a good understanding of how easy it is to extend

Expertus to support new clouds and the significance of the

generated code, we show our own experiences on migrat-

ing RUBBoS application from Emulab to EC2 and then to

OpenCirrus. Initially we developed XSLT templates for the

Emulab cloud and then used the same templates to extend

the applications to new clouds. We first calculated the total

number of templates line in Emulab and then counted the total

number of templates lines modified (i.e., added, removed, and

updated). Our results are shown in Figure 7(a), as illustrated

in the figure once we have implemented templates for Emulab,

120120



the amount of changes required to support EC2 was very small

(less than a 10% template change). To better understand the

differences we have divided the changes into five categories:

1) Changes to core templates (cloud independent resources),

2) Web server (e.g., Apache HTTPd), 3) Application server, 4)

Database server and, 5) RUBBoS specific templates. As shown

in the figure we have made very little changes to HTTPd and

Apache Tomcat; in contrast, we changed 10% of the total

lines in the core templates, which was mainly due to the

differences in EC2. Likewise, moving from Emulab to Open

Cirrus involved a similar amount of changes, and our results

are shown in the same figure (Figure 7(a)).

To show the significance of template changes on generated

code, we created an experiment specification (say a.xml)

with 16 nodes and generated code for Emulab. Next, we

modified that for EC2 and generated the code and calculated

the differences between the two sets of codes. To highlight

the differences we divided the generated code into the same

five categories as in templates. Our results are illustrated in

Figure 8(a). As shown in the figure, a small change in template

makes a huge difference in the generated code. Likewise we

modified the a.xml to support Open Cirrus and generated

the code and analyzed them. As shown in Figure 8(a), the

difference between Emulab and Open Cirrus is similar to that

of EC2.

2) Supporting New Applications: Here we show the amount

of template changes required to support two different ap-

plications (RUBiS and Cloudstone) once we have support

for RUBBoS. Both RUBBoS and RUBiS follow the same

application architecture and deployment procedure whereas

Cloudstone requires a slightly different deployment topology.

Supporting RUBiS concurred of following modifications to

the templates: 1) changed the web server load balancing URL,

2) built the RUBiS web application (in lieu of RUBBoS),

3) specified the dataset location, and 4) changed the work-

load executor. Supporting RUBiS required creating three new

templates for the client side. The amount of change to the

template on three different clouds (Emulab, EC2 and Open

Cirrus) is shown in Figure 6(c). As shown in the figure we

made only a 30% change to the core template (the original

RUBBoS template) to integrate RuBiS into Expertus.

Supporting Cloudstone required more changes compared to

that of RUBiS. In Cloudstone Web server became the key

entity whereas in RUBBoS/RUBiS it was just a load balancer.

Importantly, we were able to reuse most of the templates for

the application and database tier. In Figure 7(b) we have given

the number of template lines we changed for this task, in fact

we have divided the template changes into to five categories to

highlight the changes. Due to the major difference in RUBBoS

and CloudStone we had to create a set of new templates

for CloudStone that aggregates around 1600 templates lines.

Nevertheless, more than 95% of those lines are contributed

from new XML and PHP configurations needed for Cloud-

Stone and rest we reused from the existing templates. Next,

to show the significance of templates changes on generated

code, we created a specification with the same number of

nodes for both RUBBoS and CloudStone. We generated the

resources for Emulab and measured the differences, as shown

in Figure 8(b) we observed a significanct difference in Web,

App and Database tiers.

3) Supporting a New DB Middleware: To illustrate the

flexibility of Expertus, we show the amount of template

changed to support MySQL Cluster [10] database given that

Expertus already has support for C-JDBC [22] (with MySQL).

Concretely, we calculated the number of templates lines

changed during migration from C-JDBC to MySQL Cluster.

This involved a few template changes and the addition of a few

new templates to handle three node types in MySQL Cluster.

MySQL Cluster is implemented by a combination of three

types of nodes (Management, SQL and Data nodes) as com-

pared to a single type in C-JDBC. In addition, with C-JDBC, it

is easy to scale-out (i.e., to add more database nodes). It is just

a matter of deploying a new database server and copying the

data dump. In contrast, scaling-out MySQL Cluster requires

a completely different procedure (i.e., database partitioning)

and needs to repopulate the database using SQL statements.

Additionally, C-JDBC has only one database URL (i.e., URL

of C-JDBC), but MySQL Cluster contains multiple SQL nodes

which requires that each application server to be configured

to communicate with each SQL node. As a result of all these

changes; moving from C-JDBC to MySQL Cluster involves

around a 24% change to database templates. Nevertheless,

once the template is created, we can easily scale MySQL

Cluster up to any level with simple configuration changes.

Figure 7(c) illustrates the total number of template lines,

lines changed, and lines changed in generated code. To better

understand, we have categorized the changes into four types:

DB install, DB-configure, DB-other (start, stop, reset), and

core changes. We then changed the specification for C-JDBC

with 8 database servers and generated resources for Emulab

cloud. We analyzed the generated code in the same four

categories. Next, we modified the experiment specification for

MySQL Cluster and generated code for Emulab. As expected,

we observed huge differences in the generated code and this

difference become non-trivial when increasing the number of

nodes. Our results are shown in Figure 8(c), as shown in

Figure 7(c) and Figure 8(c) a small template change caused a

huge difference in the generated code.

V. RELATED WORK

Experimentation is an essential approach used in both

academia and industry to gain an understanding of system

behavior, formation and testing of hypotheses, system con-

figuration and tuning, obtaining solution information, and re-

solving performance bottlenecks. There are many open source

and commercial tools for configuration management and small

scale application deployment [17]–[20]. Yet, there have been

relatively few efforts aimed at building software tools to reduce

complexity associated with large-scale testing of distributed

applications [1]–[6].

Steafan et al. [29] introduced Cloud9, a platform for au-

tomated testing of software by using scalable parallelization

121121



of symbolic execution on clusters of commodity hardware,

to help cope with path explosion. Same authors extend their

works and introduced the concept of testing as a service

(TaaS) [31]. The authors claimed that the combination of

recent advances in test automation and the availability of

compute clouds can offer unprecedented levels of testing

quality. In our approach, we go beyond and provide software

tools to empirically evaluate complex distributed system, but,

both approaches share the same goal of making experiment

evaluation easier.

Our project parallels several others using XML and XSLT

for code generation. For example, the SoftArch/MTE [25] and

Argo/MTE teams have also had favorable experiences using

XML + XSLT generators to ”glue” off-the-shelf applications

together [23], [25]. Likewise, XML+XSLT is advocated for

code generation tasks in industry as well [24]. One of the

closest to our approach is Weevil [8], which also focuses on

workload generation and script creation. In fact, later they ob-

served some of the limitations in their approach and proposed

four enhancements to explore richer scenarios and to obtain

results with greater confidence [5]. A DSL based approach

for software development and deployment is presented by

Krzysztof et al. [30]. To our knowledge, these efforts have not

explored the issues of extensibility, flexibility, or modularity

of test automation that is presented here in this paper.

VI. CONCLUSION

Expertus, our experiment automation framework for dis-

tributed software systems in IaaS clouds, has been developed

to minimize human errors and maximize efficiency when con-

ducting large scale distributed experiments. More importantly,

it helps move forward with the rapid evolving cloud computing

paradigm by automating exhaustive software testing in a

timely manner. We have applied our own experiences and

extended research work to improve the usability of the frame-

work. In this paper we illustrated how our approach can be

used to deploy and test several representative applications on

heterogeneous cloud platforms. More generally, our evaluation

results show the feasibility, extensibility and usefulness of our

approach in cloud testing. We have also identified several

limitations of our tool and continue our research work to

address them. Our final goal is to make Expertus available for

public use. Our tool can significantly reduce the deployment

and configuration cost of running distributed test scenarios in

today’s production cloud environments, which indicates great

promise for the future.

ACKNOWLEDGMENT

This research has been partially funded by National Science

Foundation by IUCRC/FRP (1127904), CISE/CNS (1138666),

RAPID (1138666), CISE/CRI (0855180), NetSE (0905493)

programs,and gifts, grants, or contracts from DARPA/I2O, Sin-

gapore Government, Fujitsu Labs, Wipro Applied Research,

and Georgia Tech Foundation through the John P. Imlay, Jr.

Chair endowment. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the

National Science Foundation or other funding agencies and

companies mentioned above.

REFERENCES

[1] Y Ioannidis, M Shivani, G Ponnekanti. ZOO: A Desktop Experiment
Management Environment. In Proceedings of the 22nd VLDB Confer-
ence, Mumbai(Bombay), India, 1996.

[2] K L. Karavanic, B P. Miller. Experiment management support for
performance tuning. In Proceedings of the 1997 ACM/IEEE conference
on Supercomputing, Mumbai(Bombay), India, 1996.

[3] R Prodan, T Fahringer. ZEN: A Directive-based Language for Automatic
Experiment Management of Distributed and Parallel Programs. In ICPP
2002, Vancouver, Canada.

[4] R Prodan, T Fahringer. ZENTURIO: An Experiment Management
System for Cluster and Grid Computing. In Cluster 2002.

[5] Y Wang, A Carzaniga, A L. Wolf. Four Enhancements to Automated
Distributed System Experimentation Methods. In ICSE 2008.

[6] S Babu, N Borisov, S Duan, H Herodotou, V Thummala. Automated
Experiment-Driven Management of (Database) Systems. In HotOS
2009, Monte Verita, Switzeland.

[7] A Fox, W Sobel, H Wong, J Nguyen, S Subramanyam, A Sucharitakul,
S Patil, D Patterson. Cloudstone: Multi-Platform, Multi-Language
Benchmark and Measurement tools for Web 2.0. In CCA 2008.

[8] Y. Wang, M.J. Rutherford, A. Carzaniga, and A. L. Wolf. Automating
Experimentation on Distributed Testbeds. In ASE 2005.

[9] Cooper, B.F, Silberstein, A, Tam, E, Ramakrishnan, R, Sears R. Bench-
marking Cloud Serving Systems with YCSB. In SOCC, 2010.

[10] MySQL Cluster. http://www.mysql.com/products/database/cluster/.
[11] Emulab - Network Emulation Testbed. http://www.emulab.net.
[12] RUBBoS: Bulletin board benchmark. http://jmob.objectweb.org/rubbos.

html.
[13] RUBiS: Rice University Bidding System. http://rubis.ow2.org/.
[14] Open Cirrus. https://opencirrus.org/.
[15] WIPRO Technologies. www.wipro.com/.
[16] Amazon Elastic Compute Cloud. http://aws.amazon.com.
[17] Distributed IT Configuration Management. http://cfengine.com.
[18] Puppet Data Center Automation Solution. http://www.puppetlabs.com/.
[19] Smart Framework for Object Groups. http://www.smartfrog.org/.
[20] Software Testing Automation Framework. http://staf.sourceforge.net.
[21] G Swint, C Pu, C Consel, G Jung, A Sahai, W Yan, Y Koh, Q Wu.

Clearwater - Extensible, Flexible, Modular Code Generation. In Auto-
mated Software Engineering (ASE 2005).

[22] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-jdbc: Flexible database
clustering middleware. In Proceedings of the USENIX 2004 Annual
Technical Conference, 2004.

[23] Cai, Y., Grundy, J., and Hosking, J. Experiences Integrating and Scaling
a Performance Test Bed Generator with an Open Source CASE Tool.
In ASE 2004.

[24] Sarkar, S. Model driven programming using XSLT: an approach to
rapid development of domain-specific program generators In www.XML-
JOURNAL.com. August 2002.

[25] Grundy, J., Cai, Y., and Liu, A. SoftArch/MTE: generating distributed
system test-beds from high-level software architecture descriptions. In
ASE 2001.

[26] Malkowski, S., Hedwig, M., and Pu, C. Experimental evaluation of N-
tier systems: Observation and analysis of multi-bottlenecks. In IISWC
2009, Austin, TX, USA.

[27] Jayasinghe, D., Malkowski, S., Wang, Q., Li, J., Xiong, P., and Pu, C.
Variations in performance and scalability when migrating n-tier appli-
cations to different clouds. In CLOUD 2011.

[28] Wang, Q., Malkowski, S., Jayasinghe, D., Xiong, P., Pu, C., Kane-
masa, Y., Kawaba, M., and Harada, L. Impact of soft resource allocation
on n-tier application scalability. In IPDPS 2011.

[29] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel Symbolic
Execution for Automated RealWorld Software Testing. In EuroSys 2011.

[30] K. Sledziewski, B. Bordbar and R. Anane. A DSL-based Approach
to Software Development and Deployment on Cloud. In 2010 24th
IEEE International Conference on Advanced Information Networking
and Applications.

[31] G. Candea, S. Bucur, and C. Zamfir. Automated Software Testing as a
Service. In SOCC 2011.

122122


