
Improving Preemptive Scheduling with
Application-Transparent Checkpointing in Shared Clusters

Jack Li, Calton Pu
Georgia Institute of Technology

Yuan Chen, Vanish Talwar, Dejan Milojicic
HP Labs

ABSTRACT
Modern data center clusters are shifting from dedicated sin-
gle framework clusters to shared clusters. In such shared
environments, cluster schedulers typically utilize preemption
by simply killing jobs in order to achieve resource priority
and fairness during peak utilization. This can cause signifi-
cant resource waste and delay job response time.

In this paper, we propose using suspend-resume mech-
anisms to mitigate the overhead of preemption in cluster
scheduling. Instead of killing preempted jobs or tasks, our
approach uses a system level, application-transparent check-
pointing mechanism to save the progress of jobs for resump-
tion at a later time when resources are available. To reduce
the preemption overhead and improve job response times,
our approach uses adaptive preemption to dynamically se-
lect appropriate preemption mechanisms (e.g., kill vs. sus-
pend, local vs. remote restore) according to the progress of
a task and its suspend-resume overhead. By leveraging fast
storage technologies, such as non-volatile memory (NVM),
our approach can further reduce the preemption penalty to
provide better QoS and resource efficiency. We implement
the proposed approach and conduct extensive experiments
via Google cluster trace-driven simulations and applications
on a Hadoop cluster. The results demonstrate that our ap-
proach can significantly reduce the resource and power us-
age and improve application performance over existing ap-
proaches. In particular, our implementation on the next
generation Hadoop YARN platform achieves up to a 67%
reduction in resource wastage, 30% improvement in overall
job response time times and 34% reduction in energy con-
sumption over the current YARN scheduler.

General Terms
Management, Performance

Keywords
Cloud computing, Cluster resource management, Scheduling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Middleware ’15, December 07-11 2015, Vancouver, BC, Canada
c©2015 ACM. ISBN 978-1-4503-3618-5/15/12 ...$15.00.

DOI: http://dx.doi.org/10.1145/2814576.2814807.

1. INTRODUCTION
Modern data centers are shifting to shared clusters where

the resources are shared among multiple users and frame-
works [24, 14, 21, 3]. A key enabler for such shared clus-
ters is a cluster resource management system which allo-
cates resources among different frameworks. For example,
Hadoop’s new generation platform—YARN (Yet Another
Resource Negotiator [24]) allows multiple data processing
engines such as interactive SQL, real-time streaming, and
batch processing to share resources and handle data stored
in a single platform in a fine-grained manner. Other similar
platforms include Apache Mesos used at Twitter [14] and
proprietary solutions deployed at Google and Microsoft [3].

Current cluster schedulers typically utilize preemption to
coordinate resource sharing, achieve fairness and satisfy SLOs
during resource contention. For example, if high priority
jobs share the same cluster with low priority jobs and a re-
source shortage occurs, these schedulers preempt the low
priority jobs and give more resources to high priority jobs.
The current mechanism to handle such preemption is to sim-
ply kill the low priority jobs and restart them later when
resources are available. This simple preemption policy en-
sures fast service times of high priority jobs and prevents a
single user/application from occupying too many resources
and starving others; however, without saving the progress of
preempted jobs, this policy causes significant resource waste
and delays the response time of long running or low prior-
ity jobs. Our analysis of a publicly available Google cluster
trace [25] found that 12% of all scheduled tasks were pre-
empted. If these tasks are simply killed with no checkpoint-
ing, it can result in up to a 35% loss in total cluster usage.
Similarly, Microsoft reported that about 21% of jobs were
killed due to preemptive scheduling in its Dryad cluster [1].
Long running, low priority jobs are also repeatedly killed
and restarted in Facebook’s Hadoop cluster [5].

In this paper, we propose an approach that uses system
level, application-transparent suspend-resume mechanisms
to implement checkpoint-based preemption 1 and reduce the
preemption penalty in cluster scheduling. Instead of killing
a job or task, we suspend execution of running processes
(tasks) and store their state (e.g., memory content) for re-
sumption at a later time when resources are available. To
reduce the preemption overhead and improve performance,
our approach leverages fast storage technologies such as non-
volatile memory (NVM) and uses a set of adaptive preemp-
tion policies and optimization techniques. We implement the

1We use suspend-resume and checkpoint-based preemption
interchangeably.

222

proposed approach using the CRIU (Checkpoint/Restore In
Userspace) [8] software tool with HDFS and PMFS [12] and
integrate our solution into Hadoop YARN [24].

The following key contributions differentiate our solution
from previous work.

• Using application-transparent checkpointing mech-
anisms in cluster scheduling. Our method leverages
existing work from application-transparent checkpointing
mechanisms and uses them to implement non-killing pre-
emption in cluster scheduling. It can be applied to a wide
range of applications without needing to modify the appli-
cation code. We evaluate the feasibility and applicability
of our approach using Google cluster trace-driven simula-
tion and real industry workloads with different configura-
tions and scenarios.

• Adaptive preemption policies and optimization tech-
niques. Application-transparent checkpointing mecha-
nisms are typically expensive because they save the entire
state of a running application and dump it to disk which
may trigger a lot of memory, I/O and network traffic. To
address these issues, we develop a set of adaptive preemp-
tion policies to mitigate these suspend-resume overheads.
The adaptive policies dynamically select victim tasks and
the appropriate preemption mechanisms (e.g., kill vs. sus-
pend, local vs. remote restore) according to the progress
of each task and its suspend-resume overhead. Instead
of dumping the entire memory region, memory usage is
tracked, and only those memory regions that were changed
since the last suspend are saved to reduce the checkpoint
size and latency. The adaptive policies enable significant
improvement in application performance over the policy
that always suspends or kills a job during preemption.

• Leveraging fast storage. Our approach can further re-
duce the preemption overheads using emerging fast stor-
age technologies such as non-volatile memory (NVM) [17].
By efficiently storing application checkpoints on fast stor-
age, our approach can quickly suspend and resume ap-
plications and improve the efficiency of checkpoint-based
preemption. Our prototype implements checkpoints with
an NVM-based file system – PMFS (Persistent Memory
File System) [12]. In our implementation, we leverage the
CRIU software tool [8] to save checkpoints to an emulated
NVM-based file system using PMFS (Persistent Memory
File System) [12]. Alternatively, we can use NVM as per-
sistent memory (NVRAM) and copy checkpoint data from
DRAM to NVM using memory operations. This method
exploits NVM’s byte-addressability to avoid serialization
and uses operating system paging and processor cache
to improve latency. To improve performance, a shadow
buffering mechanism can be used to explicitly handle vari-
ables between DRAM and NVRAM. For example, updates
to DRAM can be incrementally written to NVM. During
resumption, an attempt to modify the data would move
the data back from NVRAM to DRAM.

• Implementation with Hadoop YARN.We implement
the proposed non-killing preemptive scheduling and adap-
tive preemption policies in Hadoop YARN – the new gen-
eration Hadoop cluster resource manager. In particu-
lar, we implement application-transparent checkpointing
to suspend and resume preempted applications using CRIU.
We extend CRIU to save checkpoints to HDFS so that

checkpointed tasks can restart from any node in the clus-
ter. We conduct extensive experiments to evaluate the ap-
plicability of our checkpoint-based preemption and com-
pare it with YARN’s current kill-based preemption on dif-
ferent storage devices: HDD, SSD and NVM.

We found that our approach can improve overall job re-
sponse times by 30%, reduce resource wastage by 67% and
lower energy consumption by 34% over the current kill-
based preemption approach used in modern cluster sched-
ulers. These savings can result in more total jobs being
scheduled, less energy consumption and reduced costs in the
long-term, which ultimately yields more profit.

The rest of paper is organized as follows. We motivate
our work with a detailed study of a data center trace from
Google in Section 2. Section 3 presents our suspend-resume
based preemption approach and evaluation results. The op-
timization policies and techniques are discussed in Section 4.
The Hadoop YARN implementation and experimental re-
sults are discussed in Section 5. Section 6 reviews related
work and Section 7 concludes the paper.

2. REAL-WORLD CLUSTER PREEMPTION
To understand the impact of preemption in cluster schedul-

ing, we analyzed the publicly available cluster workload traces
from the Google data center [25]. This trace provides data
from 12,500 machines for the month of May 2011. It con-
tains cluster scheduler requests and actions for 672,000 jobs.

A job is composed of one or more tasks. Each task has a
scheduling priority level from 0 to 11 and a scheduling class
describing latency sensitivity (four latency levels). The trace
includes detailed task information such as per-task inter-
arrival time, CPU/memory demand and usage over time,
priority, latency sensitivity, and event type (e.g., submitted,
scheduled, evicted or completed). In total, there are 144
million task events during the 29-day trace.

Our goal is to understand the resource efficiency and per-
formance impact of preemption using the Google cluster
traces. Prior analysis [4] has shown that the task eviction
event in the trace (accounting for 93% of evictions) is pri-
marily triggered by priority scheduling in Google’s cluster
scheduler to handle task congestion or resource contention.
For example, when a high priority job arrives and the avail-
able cluster resources are not sufficient to meet its demand,
active low priority jobs/tasks are evicted to release the re-
sources to the higher priority job. Preempted tasks are auto-
matically resubmitted to the scheduler and may experience
multiple evictions before successfully finishing. In our study,
we focus on scheduling events in the Google trace, specifi-
cally submit, schedule, eviction and finish events. According
to the Google trace description, a task is evicted for a va-
riety of reasons including preemption by a higher priority
task or job, scheduler over-commitment whereby the actual
demand of a machine exceeds capacity, the machine which
the task is running on becomes unusable, or the data on the
machine becomes lost. To determine preemption, we use the
following criterion proposed in [4]: if a higher priority task is
scheduled on the same machine within five seconds after the
lower priority job was evicted, then we count that the lower
priority job was preempted due to preemptive scheduling.

Figure 1a shows the percentage of scheduled tasks that
were preempted over time during their execution. The re-
sults shows that many low priority scheduled tasks were pre-

223

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 5 10 15 20 25

P
re

em
pt

io
n

R
at

e
[%

]

Time [Day]

Low Priority
Medium Priority

High Priority

(a) Preemption Rate Timeline

0

25.0

50.0

75.0

100.0

 0 1 2 3 4 5 6 7 8 9 10 11

%
 o

f a
ll

P
re

em
pt

io
ns

Priority
(b) Preemption Rate Per Priority

 0

 250

 500

 750

 1000

1 2 3 4 5 6 7 8 9>=10

D
is

tin
ct

 T
as

ks
[th

ou
sa

nd
s]

Num. of Preemptions
(c) Preemption Frequency Distribution

Figure 1: Preemption in Google Trace.

empted during their execution. Table 1 summarizes the ag-
gregated number of tasks and preemption rate for each pri-
ority category. The results show that an average of 12.4%
of scheduled tasks were evicted due to preemptive schedul-
ing in the Google cluster and 20% of scheduled low priority
tasks were preempted. Figure 1b shows the preemption of
low priority tasks (i.e., 0-1 priorities) account for over 90%
of the total preemptions. These tasks average four evictions
per task-day, and a 100-task job running at this priority will
have one task preempted every fifteen minutes [20]. Ad-
ditionally, a single task could be scheduled and preempted
multiple times as shown in Figure 1c. More than 43.5% of
preempted tasks were preempted more than once, and 17%
of these tasks were even preempted ten times or more.

Priority Num. of Tasks Percent Preempted
Free(0-1) 28.4M 20.26%
Middle (2-8) 17.3M 0.55%
Production (9-11) 1.7M 1.02%

Table 1: Preempted Tasks with Different Priorities.

Without a proper mechanism to save the progress of pre-
empted tasks, compute resources such as CPU, memory and
power will be wasted due to repeated execution of these pre-
empted tasks. Frequent and repetitive preemption causes
even more resource wastage. We analyzed the impact of
preemption on resource wastage in Google trace and found
that kill-based preemption could result in a huge amount
of resource wastage. If we assume that the scheduler sim-
ply kills the preempted tasks and there is no mechanism to
save the progress of a preempted task, 130k CPU-hours (up
to 35% of total usage) could have been wasted during the
trace period due to preemptive scheduling. The amount of
resources wasted is estimated as the amount of CPU time
spent on unsuccessful execution of tasks, i.e., the CPU time
between schedule and preempt events.

Further, although most of the tasks preempted are low
priority tasks, we find that tasks bound by latency were
also preempted. Table 2 summarizes the number of sched-
uled tasks and the percentage of preempted tasks for each
latency sensitivity level. The result shows that a large num-
ber of highest latency-sensitive tasks (14.8%) were still pre-
empted. This can have a significantly negative impact on
task performance and application QoS.

We also found similar issues reported with preemptive
scheduling in Facebook and Microsoft’s shared clusters run-
ning big data applications [1, 5]. In Facebook’s 600 node
Hadoop cluster, 3% of its jobs needed map slots that ex-

Latency Sensitivity Num. of Tasks Percent Preempted
0 (lowest) 37.4M 11.76%
1 5.94M 18.87%
2 3.70M 8.14%
3 (highest) 0.28M 14.80%

Table 2: Preempted Tasks with Different Latency Sensitiv-
ities

ceeded 50% of the cluster’s capacity and 2% of its jobs had
map tasks that exceeded the capacity of the entire cluster.
During peak times, a large production job would arrive every
500 seconds and kill all low priority map tasks [5]. During
these busy periods, these jobs are repeatedly killed, wast-
ing a significant amount of cluster resources. Similarly, Mi-
crosoft reported that roughly 21% of jobs were killed due to
preemptive scheduling [1].

In summary, our analysis of production workloads shows
that kill-based preemption in shared cluster scheduling re-
sults in significant resource wastage and performance loss.

3. CHECKPOINT-BASED PREEMPTION
In this paper, we propose the use of an application-transparent

suspend-resume mechanism to implement checkpoint-based
preemption. This improves current preemption policies and
mechanisms in cluster scheduling and reduces resource wastage.

3.1 System Model
We consider a cluster consisting of many nodes running

jobs across multiple frameworks, applications and users. Each
node has a set of computing resources including CPU, mem-
ory, storage, I/O and network bandwidth. Each job consists
of multiple tasks that are scheduled to run on nodes by a
scheduler based on their resource demand and scheduling
policies. Tasks can share resources on nodes and achieve
performance isolation via “containers” or “slots”.

A cluster scheduler is in charge of scheduling the tasks of
submitted jobs and managing task resources. Users submit
jobs to a queue in the cluster and each job has a schedul-
ing priority and resource requirement (amount of CPU and
memory it needs). In particular, the scheduler assigns a
job’s tasks to specific nodes for execution. When there are
idle resources, the cluster scheduler can give a job’s tasks
these resources in excess to its capacity to improve clus-
ter utilization. When a new job arrives and there are no
more resources available, the scheduler chooses active jobs
that are either of lower priority (priority scheduling) than

224

the arriving job, or jobs that are using more resources than
their fair share (fair-share scheduling) or guaranteed capac-
ity (capacity scheduling). The tasks of the selected jobs are
then preempted to release their occupied resources. Mul-
tiple scheduling policies—such as priority, fair-sharing and
capacity scheduling—can be employed. To simplify the dis-
cussion but without loss of generality, we assume priority
scheduling is used in the rest of the paper.

The model described above is generic and employed by
many frameworks such as Google’s Omega [21], Hadoop
YARN [24], Mesos [14] and Dryad [15].

3.2 Checkpoint-based Preemption
Most cluster schedulers preempt a job or task by simply

killing it. Alternatively, we propose to save the progress of
a preempted task by suspending or checkpointing its state
and resuming it later when resources are available.

3.2.1 Application-transparent Suspend-Resume
While application-specific checkpointing mechanisms have

been proposed in prior work such as [1, 6], we focus on the
use of application-transparent checkpoint suspend-resume
mechanisms such as CRIU (Checkpoint/Restore in Userspace)
and OS checkpoint mechanisms (e.g., SIGSTOP/SIGTSTP
/SIGCONT). These mechanisms suspend and checkpoint a
running application as a collection of files. The suspended
application can then be resumed at any time and return to
the point it was suspended. Typically, suspending an appli-
cation involves collecting and dumping the entire name space
information to files on disk, including kernel objects, process
tree via ptrace, /proc, netlinks, syscalls, signals, CPU regis-
ter sets, and memory content. To restore a suspended pro-
cess, the process tree is rebuilt from the saved information,
pipes are restored and the memory mapping is recreated.

We implement suspend-resume-based preemption using
CRIU [8]. CRIU is an open-source Linux software tool that
supports checkpoint-restore processes on x86 64 and ARM
and works on unmodified Linux-3.11+ included in Debian,
Fedora, Ubuntu, etc. It has been tested for many applica-
tions including Java, Apache, MySQL and Oracle DB and
integrated with LXC/Docker/OpenVZ containers.

Our cluster scheduler uses CRIU to suspend a preempted
task and adds it back to the submission queue. The resub-
mitted task includes the information about the task’s cur-
rent progress, checkpoint location, etc. When a suspended
task is scheduled, the scheduler runs a CRIU restore and
resumes the task from the saved state.

3.2.2 Distributed Suspend-Resume
CRIU supports checkpoints only on the local file system

due primarily to potential name conflicts on a remote node.
We enhance CRIU to save checkpoints on distributed file sys-
tems. In particular, we extend CRIU to work with HDFS
to support remote suspend-resume. This enables more flex-
ible scheduling by resuming a suspended task on any avail-
able node. We achieve this by leveraging libhdfs. Instead of
dumping checkpointed data to local file buffers, we perform
a write and flush to a system-specified directory in HDFS.
Similarly during restore, CRIU reads the contents of check-
pointed data from HDFS instead of the local file system. Ad-
ditionally, some process information (e.g., linked files) that
is originally checkpointed is modified to make resumption
possible on a remote node. This way, remote resumption is

completely handled by HDFS without worrying about the
migration and replication of checkpointed data.

3.2.3 Suspend-Resume with NVM
Checkpointing a task can cause overhead, especially if

written to slow HDD devices. To reduce the overhead, we
leverage fast storage technologies such as SSD and also emerg-
ing byte-addressable non-volatile memory (NVM) technolo-
gies [17]. By efficiently storing application checkpoints on
faster storage devices, we can implement fast mechanisms
to suspend-resume applications at runtime.

NVM can be used as a fast disk with file system interfaces
or as virtual memory. Accordingly, there are two ways to
save checkpoints in NVM. The first is to use NVM as fast
disks and save the checkpoints (images) in NVM-based file
systems such as Intel PMFS (Persistent Memory File Sys-
tem) [12] or BPFS [7]. PMFS is a light-weight kernel-level
file system and provides byte-addressable, persistent mem-
ory to applications via CPU load/store instructions. PMFS
offers low-overhead using a variety of techniques. It avoids
the block device layer by using byte-addressability and map-
ping persistent memory pages directly into an application’s
memory space. We leverage PMFS in our prototype and
evaluations to emulate an NVM-based file system. To sup-
port suspend/resume in distributed environments, we use a
local PMFS mounted directory as the HDFS data storage.
To use PMFS with HDFS, we pre-allocate a contiguous area
of DRAM before the OS boots for use as the file system
space. Then, we mount PMFS by pointing it to the mem-
ory address of the starting region and specifying the total
size of the file system. The PMFS-mounted directory can
then be used by HDFS. In our prototype, CRIU saves the
checkpoints via the HDFS interface; HDFS, in turn, stores
it in PMFS across multiple nodes.

Alternatively, we can use NVM as virtual memory (i.e.,
NVRAM). This method exploits NVM’s byte-addressability
to avoid serialization and uses OS paging and processor
cache to improve latency. In this case, checkpointed data
is copied from DRAM to NVM using memory operations.
To improve performance, a shadow buffering mechanism can
be used to explicitly handle variables between DRAM and
NVRAM [16]. Updates to DRAM can be incrementally writ-
ten to NVM. During resumption, an attempt to modify the
data would move the data back from NVRAM to DRAM.
Our current prototype has not yet integrated the mecha-
nisms for using NVM as virtual memory for checkpointing,
but it is a topic for our future work.

3.3 Evaluation

3.3.1 Suspend-Resume Overhead
The overhead of suspend-resume is mainly determined by

the storage media performance (i.e., I/O bandwidth) and
the application’s memory size. We run experiments to eval-
uate the overhead of our application-transparent, suspend-
resume mechanism on different storage media. We suspend
and resume a program, which allocates and fills a specified
size of memory and performs a simple computation. We vary
the program’s memory size and measure the time needed to
suspend and resume the program on different storage me-
dia: HDD, SSD and NVM (PMFS, in this case). Our ex-
periment machine has two Xeon 5650 CPUs, 96GB RAM,
500GB HDD and a 120GB SSD (OCZ Deneva 2). The re-

225

 0
 100
 200
 300
 400
 500
 600

0 1.0 2.5 5.0 7.5 10.0

To
ta

l D
um

p/
R

es
to

re
Ti

m
e

[s
]

Checkpoint Size [GB]

HDD
SSD
NVM

(a) Local File System

 0
 100
 200
 300
 400
 500
 600

0 1.0 2.5 5.0 7.5 10.0

To
ta

l D
um

p/
R

es
to

re
Ti

m
e

[s
]

Checkpoint Size [GB]

HDD
SSD

PMFS

(b) HDFS

Figure 2: Suspend and Restore Performance on Local FS and HDFS.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

W
as

te
d

C
P

U
C

ap
ac

ity
 [c

or
e-

ho
ur

s]

Preempt Method

Kill
Chk-HDD
Chk-SSD
Chk-NVM

(a) Resource Wastage

 3800
 3850
 3900
 3950
 4000
 4050
 4100

P
ow

er
 [k

W
h]

Preempt Method
(b) Energy Consumption

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Low
Priority

Medium
Priority

High
Priority

N
or

m
al

iz
ed

R
es

po
ns

e
Ti

m
e

(c) Performance

Figure 3: Google Trace-driven Simulation: Comparison of Different Preemption Policies.

sults on the local file system are shown in Figure 2a. The
time of suspending and resuming the program is linearly cor-
related with the program’s memory footprint. The SSD is
approximately 3-4x times faster than the HDD, and NVM
is 10-15x faster than SSD.

The results on HDFS are shown in Figure 2b. Similar
to the local file system, the suspend and restore time is
mostly linearly correlated with the memory size, but it takes
more time to finish compared to the local file system due
to the overhead added by HDFS. Compared with the sus-
pend/resume on a local file system, suspend/resume with
HDFS enables a suspended task to start on any node. Hence,
it enables the scheduler to schedule the task earlier and may
actually reduce the overall response time.

These results show that the suspend-resume overhead varies
significantly depending on the job size and storage perfor-
mance. The overhead can be high for jobs with large mem-
ory footprints (e.g., memory intensive applications) or on
slow storage such as HDD. The benefit of suspend-resume-
based preemption will depend on the I/O performance and
workload characteristics. This raises the question: Is the
proposed suspend-resume-based preemption actually benefi-
cial for real workloads and feasible in practice? To answer
this, we conduct experiments via Google cluster trace-driven
simulation and with real applications.

3.3.2 Google Trace-driven Simulation
We develop a trace-driven cluster scheduling simulator. It

follows the system model detailed in Section 3.1 and imple-
ments different scheduling and preemption policies. We use
a one-day job trace data from the Google cluster trace in
our simulation. The one-day trace contains approximately
15,000 jobs (totaling over 600,000 tasks) requiring over 22,000
cores. The jobs are split into three priority levels and pre-

emption decisions made by the scheduler are based on each
job’s priority level. The system performance parameters—
such as I/O bandwidth and checkpoint overhead—on dif-
ferent storage media are populated with the measurements
obtained in Section 3.3.1.

We evaluate four policies. The kill-based policy kills lower
priority jobs during preemption. The other three policies
checkpoint preempted tasks by saving the tasks’ states to
different storage media (HDD, SSD and NVM) and resume
them later when resources are available. Figure 3 shows re-
source wastage (e.g., the amount of CPU-time wasted due to
repeatedly killing jobs, and from preemption and checkpoint
overhead), the energy consumption and the job performance
(job response time normalized to that of the kill-based pre-
emption) using the four different policies. A job’s response
time is defined as the total time the job spent queueing, plus
the actual job execution time.

The kill-based preemption, which is used by most clus-
ter schedulers, wastes about 3,400 CPU-core hours (about
35% of the total capacity) by killing low priority jobs to
reclaim resources for higher priority jobs. Compared to kill-
based preemption, checkpoint-based preemption reduces the
resource wastage to 14.6%, 11.1% and 8.5% on HDD, SSD
and NVM, respectively. This reduced resource wastage im-
plies more jobs can be scheduled in the same time period
and lead to cost savings.

Energy consumption was calculated by taking the average
CPU utilization of each machine, converting it to a corre-
sponding wattage and multiplying it by the total experiment
time. Based on this calculation, checkpoint-based preemp-
tion on HDD and SSD is similar to kill-based preemption,
but the checkpoint-based approach on NVM reduces the en-
ergy consumption by about 5%.

As far as performance is concerned, checkpoint-based pre-

226

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

R
es

po
ns

e
Ti

m
e

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint

(a) High Priority Job Performance

 0
 1
 2
 3
 4
 5
 6

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

R
es

po
ns

e
Ti

m
e

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint

(b) Low Priority Job Performance

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

E
ne

rg
y

C
on

su
m

pt
io

n

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint

(c) Energy Consumption

Figure 4: Comparison of Different Policies with Varying I/O Bandwidths.

emption using HDD gives low priority jobs better perfor-
mance than preempt-kill, but performance for medium and
high priority jobs is worse due to the substantial checkpoint-
ing overhead. Checkpointing on SSD offers comparable per-
formance for high priority jobs to the preempt-kill policy
and also better performance for low priority jobs. The per-
formance of medium priority jobs is slightly worse than kill-
based preemption. If we use an NVM-backed file system,
the response times of both low and medium priority jobs
are reduced significantly (by 74% and 23%, respectively),
while achieving similar performance for high priority jobs.

In summary, checkpoint-based preemption can significantly
reduce resource wastage even with slow storage like HDD,
although there is a performance penalty for medium and
high priority jobs. As we use faster storage such as SSD, the
penalty becomes much smaller. With fast NVM, checkpoint-
based preemption can reduce resource wastage and energy
consumption, and improve the performance of low and medium
priority jobs, while achieving comparable performance for
high priority jobs; however, there is a non-negligible per-
formance penalty for higher priority jobs associated with
checkpoint-based preemption using slow storage. To further
understand the effectiveness and feasibility of application-
transparent, checkpoint-based preemption and the impact
of storage performance, we conduct the following sensitivity
analysis.

3.3.3 Sensitivity Analysis with Real Applications
The experiment involves two jobs each running a simple

k-means program [9] with a one-minute execution time and
5 GB memory size. The two jobs run on a real machine with
the following scenario. A low priority job starts executing
for 30s before a high priority job arrives and preempts it.
We compare three different preemption policies with differ-
ent I/O bandwidth. In the first policy wait, the high priority
job waits for the low priority job to finish before executing.
In the second policy kill, the low priority job is immediately
killed in favor of the high priority job and restarts its exe-
cution from scratch when the high priority job has finished.
In the third policy preempt-checkpoint, the low priority job
is suspended by saving its progress and the high priority job
starts executing after the checkpointing is finished. Once the
high priority job completes, the low priority job is restored
from the state it was checkpointed and continues execution.
Varying the I/O bandwidth is accomplished by saving check-
points in PMFS and changing the value of the thermal con-
trol register that is available in Intel Xeon E5-2650 CPUs,
which throttles the memory bandwidth to emulate different

I/O performance.
Figures 4a and 4b shows the normalized performance re-

sults for the high priority and low priority jobs for each of
the three policies with varying storage media bandwidth.
For the high priority job, killing the low priority job always
yields the best performance, while waiting for the low pri-
ority job to finish increases its response time by more than
one-half. When I/O bandwidth is slow, checkpointing the
low priority job actually yields worse response time than
killing it and restarting from scratch. As the I/O band-
width increases, checkpoint-based preemption yields better
performance. The response times are comparable to the kill-
based policy when the storage bandwidth is very fast, e.g,
using NVM. We also measure the energy consumption based
on the total response time of both jobs as shown in Fig-
ure 4c. The wait policy yields the best energy consumption
since no CPU cycles are wasted, while the kill policy wastes
CPU resources and consumes more energy. Checkpoint-
based preemption results in higher energy consumption with
slow storage than the kill policy.

These results confirm our observations from section 3.3.1
that the effectiveness of checkpoint-based preemption de-
pends on the storage performance and job properties, and
that checkpointing may not always be beneficial. When
the checkpointing overhead is low (e.g., with fast storage or
small job memory footprint), checkpoint-based preemption
can improve performance and energy efficiency; however,
when the checkpointing overhead is expensive (e.g., check-
pointing large jobs on slow storage), the overhead cost may
outweigh the benefit and make checkpoint-based preemption
worse than simple kill or wait-based policies. This obser-
vation motivates the idea of using an adaptive preemption
policy, which dynamically chooses an appropriate preemp-
tion mechanism conditional on the checkpointing overhead.
We discuss optimizations to the basic checkpoint-based pre-
emption in Section 4.

4. OPTIMIZATION

4.1 Adaptive Policies and Algorithms
As discussed in Section 3.3.3, the challenge of using application-

transparent checkpointing mechanisms is that they can be
expensive with slow storage and large jobs because such
mechanisms typically collect and save the entire state of run-
ning processes and memory content and dumps it to a stor-
age device. Dumping a task’s full state may trigger a lot of
memory and I/O (and possibly network traffic if checkpoint-
ing for remote resumption) and delay the relinquishment of

227

resources to high priority and critical workloads. Further, it
can degrade other active tenant applications during check-
pointing. Naive use of such methods to suspend and resume
applications in cluster scheduling with slow storage devices
can be detrimental to some jobs’ performance (e.g., high
priority, production jobs).

To address these issues, we propose a set of adaptive poli-
cies to minimize the preemption penalty. This will improve
application performance in cluster scheduling by choosing
proper victim tasks and preemption mechanisms based on
storage media performance (i.e., I/O bandwidth), workload
progress and checkpoint/restore overhead. We also propose
to use optimization techniques such as incremental check-
pointing to reduce the overhead.
1. Adaptive preemption dynamically selects victim tasks
and preemption mechanisms (checkpoint or kill) based on
the progress of each task and its checkpoint/restore over-
head. Specifically, the total checkpointing overhead is es-
timated as the sum of checkpointing and restoring a task,
plus the queueing time to checkpoint. The time of check-
pointing and restoring a task is estimated according to the
checkpoint size and I/O bandwidth (size/bandwidth). If
other checkpoint operations are occurring on the machine,
the queueing time is how long the task needs to wait for
other checkpoint operations to finish before it can dump its
own state to storage. This total overhead is compared with
the current progress of the task. If the progress exceeds the
total checkpointing overhead, the task is checkpointed. Oth-
erwise, the application is simply killed. The pseudo-code for
our preemption algorithm is shown in Algorithm 1.

Algorithm 1: Preemption Algorithm

overheadchkpt =
size

bwwrite
+ size

bwread
+ queue timedump

candidate victims = get_candidate_victims();
sort(candidate victims);
for Task t in candidate victims do

if t.progress > t.checkpoint overhead then
if t.previous checkpoint ! = null then

do_incremental_checkpoint(t);
else

do_normal_checkpoint(t);
end

else
kill(t);

end

end

2. Adaptive resumption restores preempted jobs/tasks
when resources are available according to their overheads
which are calculated based on the checkpoint size, available
network and I/O bandwidth, etc. We use HDFS to store
checkpoints, and hence a preempted task can be scheduled
on a local or remote node. It may seem that the local restore
overhead will always be lower than the overhead of remote
restore, but there can be extra costs for local restore depend-
ing on whether the restoring task will need to preempt other
running tasks or if it needs to wait in the preemption queue
for other checkpoint/restore operations to complete. The
pseudo-code for our resumption algorithm is shown below.
3. Incremental checkpointing is used to checkpoint
modified memory regions only. A task may be suspended
multiple times; for subsequent preemption after the first
checkpoint, we only need to checkpoint the task’s memory

Algorithm 2: Resumption Algorithm

overheadlocal =
size

bwread
+ queue timelocal

overheadremote = size
bwnet

+ size
bwread

+ queue timeremote

preempted tasks = get_preempted_tasks();
for Task t in preempted tasks do

if t.previous checkpoint == null then
restart_task(t);

else
if t.local resume overhead <=
t.remote resume overhead then

do_local_resume(t);
else

do_remote_resume(t);
end

end

end

regions that have been modified since the last checkpoint.
This can significantly reduce checkpoint size and latency, es-
pecially for read-dominant workloads. CRIU supports such
incremental checkpoints with memory change tracking by
leveraging soft-dirty bits in the page table. A soft-dirty bit
tracks which pages a task writes to. When first enabling
incremental checkpoints for a task, CRIU clears all the soft-
dirty bits and writable bit from the task’s page table entries.
Subsequently, if the task tries to write to a portion of its
page, a page fault occurs and the kernel sets the soft-dirty
bit for the corresponding page table entry. If the task needs
to be dumped again after its initial checkpoint, it will only
need to dump the pages which have its soft-dirty bit set.
Table 3 shows the results of checkpointing a program with
5 GB memory twice. 10% of the memory region is modified
between the first checkpoint and the second one. As we can
see, the second checkpoint operation is a magnitude faster
than a full dump for all three storage media. Our preemp-
tion utilizes incremental checkpointing whenever possible to
reduce the overhead. Similarly, depending on the amount of
resources that need to be released, the entire task memory
partition, or only a portion of it, needs to be checkpointed.
For example, to reclaim resources for a CPU-intensive job,
we only need to suspend the running job and dump a portion
of its memory region.

Storage First Checkpoint Second Checkpoint
HDD 169.18s 15.34s
SSD 43.73s 4.08s
PMFS 2.92s 0.28s

Table 3: Benefits of incremental checkpointing.

4.2 Benefits of Adaptive Policies

4.2.1 Google-trace driven Simulation
We integrate the adaptive policies into the trace-driven

simulator described in Section 4.1 and evaluate them using
the one-day job trace from the Google cluster traces similar
to Section 3.3.2. Figure 5 shows the performance (response
time normalized to the basic policy) using adaptive preemp-
tion and basic checkpoint-based preemption which always
checkpoints a preempted job. The result shows that the
adaptive policy is very effective and improves the perfor-

228

 0
 0.2
 0.4
 0.6
 0.8

 1

Low
Priority

Medium
Priority

High
Priority

N
or

m
al

iz
ed

R
es

po
ns

e
Ti

m
e

Basic Adaptive

(a) HDD

 0
 0.2
 0.4
 0.6
 0.8

 1

Low
Priority

Medium
Priority

High
Priority

N
or

m
al

iz
ed

R
es

po
ns

e
Ti

m
e

(b) SSD

 0
 0.2
 0.4
 0.6
 0.8

 1

Low
Priority

Medium
Priority

High
Priority

N
or

m
al

iz
ed

R
es

po
ns

e
Ti

m
e

(c) NVM

Figure 5: Performance Improvement with Adaptive Policies.

mance for all three types of jobs, in particular on slower
storage like HDD and SSD. The response times of low prior-
ity jobs on HDD, SSD and NVM are reduced by 36%, 12%
and 3%, respectively. The response times for medium pri-
ority are reduced by 55%, 17%, and 8% on HDD, SSD and
NVM, respectively. Adaptive policies also help improve the
high priority job performance on HDD and SSD by 29% and
8% respectively. The high priority job performance using
NVM is comparable to the kill-based policy’s performance,
the best possible performance for high priority jobs.

Our experiment results show that the adaptive approach
also reduces energy consumption for all three storage media
compared to basic checkpoint-based preemption. We omit
this graph due to space constraints.

4.2.2 Sensitivity Analysis with Real Applications
We further evaluate and compare different policies with

varying I/O bandwidths using real applications. The exper-
iment setup and scenario are the same as the one described
in Section 3.3.3.

Figures 6a and 6b shows the performance results for high
priority and low priority jobs for each of the four policies
(wait, kill, always checkpoint, adaptive) while varying the
checkpointing bandwidth. As we discussed in Section 3.3.3,
the basic policy that always chooses to checkpoint a job
is not beneficial at low bandwidths and results in perfor-
mance even worse than just killing the job. The adaptive
policy chooses to kill the low priority job at low checkpoint-
ing bandwidths, but chooses to checkpoint the low priority
job when the checkpointing bandwidth is higher. As a re-
sult, the performance of the high priority job is never worse
than the wait approach. As the available I/O bandwidth
increases, the performance approaches the kill-based policy.
Similarly, the adaptive policy achieves better performance
than the basic always-checkpoint preemption policy at low
bandwidths and obtains comparable performance to the wait
policy at high bandwidths.

The energy consumption results are shown in Figure 6c.
The basic checkpoint-based preemption policy can result in
higher energy consumption at lower bandwidths than the kill
policy. By contrast, the energy consumption of the adaptive
policy is never worse than the kill policy and is similar to
the wait policy at higher bandwidths.

5. HADOOP YARN IMPLEMENTATION
We have integrated the proposed checkpoint-based pre-

emptive scheduling and optimization policies into Hadoop
YARN. We describe the details of the implementation below

and also compare our system with YARN’s current kill-based
preemption for the DistributedShell application on different
storage devices: HDD, SSD and NVM.

5.1 Overview of Hadoop YARN
YARN is the next generation cluster resource manager

for the Hadoop platform that allows multiple data process-
ing frameworks—such as MapReduce, Spark [26], Storm,
HBase, etc.—to dynamically share resources and data in a
single shared cluster. YARN uses a global resource sched-
uler (YARN ResourceManager - RM) to arbitrate resources
(CPU, memory, etc.) among application frameworks based
on configured per-framework resource capacities and schedul-
ing constraints. A per-application YARN ApplicationMas-
ter (AM) requests resources from the RM and chooses what
tasks to run. It is also responsible for monitoring and schedul-
ing tasks within an application.

The YARN ResourceManager supports capacity schedul-
ing and fair scheduling. The scheduler allocates resources
in the form of containers to applications based on capacity
constraints, queues and priorities. Like other popular cluster
schedulers, YARN scheduler relies on preemption to coordi-
nate resource sharing, guarantee QoS and enforce fairness
as follows. When a new job or new container request arrives
and there is resource contention, the YARN ResourceMan-
ager determines what is needed to achieve capacity balance
and selects victim application containers according to pre-
defined policies (e.g., capacity sharing or priority schedul-
ing). The ResourceManager then sends a request to those
containers’ ApplicationMasters to terminate the containers
gracefully and, as a last resort, sends a request to the con-
tainers’ NodeManagers to terminate them forcefully.

5.2 Architecture and Implementation

5.2.1 Checkpoint-based Preemption
Figure 7 shows the software architecture of our checkpoint-

based preemption implementation on YARN. Preemption
and checkpointing occurs in YARN in the following man-
ner: (1) a new job or ApplicationMaster requests resources
from the ResourceManager. (2) When there is resource con-
tention, ResourceManager requests for an ApplicationMas-
ter to terminate its application container(s) so that resources
can be returned and given to an application with higher pri-
ority by dispatching a ContainerPreemptEvent. The Con-
tainerPreemptEvent specifies a particular ApplicationMas-
ter and the containers to preempt. By default, the AM does
not handle this event, so a container managed by the AM
will be forcefully killed by the NodeManager after a certain

229

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

R
es

po
ns

e
Ti

m
e

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint
Adaptive

(a) High Priority Job Performance

 0
 1
 2
 3
 4
 5
 6

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

R
es

po
ns

e
Ti

m
e

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint
Adaptive

(b) Low Priority Job Performance

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

E
ne

rg
y

C
on

su
m

pt
io

n

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint
Adaptive

(c) Energy Consumption

Figure 6: Comparison of Different Policies with Varying I/O Bandwidths.

YARN ApplicationMaster

Application Preemption
Manager

2. Preemption
Request

3. Suspend
6. Resume

3. Suspend
6. Resume

4. Suspend
Complete

n YARN Resource Manager

YARN Cluster Scheduler
5. Container
Request

YARN NodeManager

HDD, SSD, NVM (PMFS)

HDFS

Task

CRIU

Task
dump restore

YARN NodeManager

HDD, SSD, NVM (PMFS)

HDFS

Task

CRIU

Task
dump restore

1. New
Job

Figure 7: YARN Architecture.

timeout. (3) We implemented a new preemption manager
for the AM (in our current implementation we modify the
DistributedShell ApplicationMaster) to handle the Contain-
erPreemptEvent so that when such an event arrives, the
preemption manager can then make a preemption decision
based on the specified preemption policy (discussed in the
section below). For example, instead of killing the container,
the AM can suspend the task running on the container us-
ing the CRIU dump command and save the state of the
container to the Hadoop Distributed File System (HDFS).
(4) Once the checkpoint data has been successfully saved
to HDFS, the resources of the checkpointed task can be re-
claimed by the RM. The ApplicationMaster notifies the RM
of the newly available resources. (5) The ApplicationMas-
ter also submits a new request to the RM to allocate a new
container for the checkpointed task when resources are avail-
able. (6) Once resources are available, the RM allocates a
new container for the ApplicationMaster and the AM issues
a command to restore the saved checkpoints from HDFS and
to resume computation from the saved state.

In our prototype, we validated the above steps by im-
plementing it for the DistributedShell ApplicationMaster,
which is included by default in the YARN distribution. A
new component, the Preemption Manager, is added to the
DistributedShell ApplicationMaster that supports checkpoint-
ing during preemption. The DistributedShell runs a shell
command (or any program) on a set of containers in a dis-
tributed and parallel manner. The DistributedShell AM first
requests a set of resources for containers from the RM and
specifies a priority level for the request. Once the resource
request is granted, it will start running the command on
the container. The DistributedShell AM also monitors each
container and has the functionality to re-run a container if

it has failed or has been killed. Once each container has fin-
ished running the command, the AM will finish and return
the resources back to the RM. In our scenario, in case of a
resource insufficiency, the DistributedShell AM will check-
point existing containers and free up resources. On restore,
instead of issuing a new shell command, the checkpointed
state is retrieved and computation resumed.

5.2.2 Adaptive Policies Implementation
We implemented the adaptive checkpoint-based preemp-

tion and resumption algorithms described in Section 4:

• Checkpoint cost-aware eviction. Cost-aware eviction
is implemented in the ResourceManager. The RM cal-
culates the checkpointing time for each candidate victim
container by dividing the memory size of each container
by the checkpointing bandwidth available for that node.
Then, the ResourceManager selects the containers with
the lowest ratios and sends a ContainerPreemptEvent to
those ApplicationMasters to be checkpointed.

• Adaptive preemption. When an ApplicationMaster re-
ceives a ContainerPreemptEvent, it will calculate its esti-
mated checkpoint dump and restore time. If this time is
greater than the current progress of the task on the con-
tainer, the ApplicationMaster will just issue a kill com-
mand to the container instead of checkpointing it. After
the container is successfully killed, the ApplicationMaster
will request resources from the RM for a new container to
re-run the killed task.

• Incremental checkpointing with memory trackers.
We implement this by enabling CRIU to track the soft-
dirty bit of tasks that have been resumed from check-
pointed data. Subsequently, if any of these tasks are pre-
empted again, only regions which have been modified need
to be checkpointed again.

• Cost-aware remote resumption. Our implementation
supports both local and remote resumption. A check-
pointed task can specify a preference for local resume,
remote resume or no preference. If there is no preference,
when there are enough resources to run the checkpointed
task, the ResourceManager chooses an available node and
missing blocks of checkpointed data are sent to the new
node before restoring the task.

• Our implementation uses sequential checkpoint/restore
to limit the number of concurrent checkpoints on each

230

 0

 50

 100

 150

 200
C

P
U

 W
as

ta
ge

[c
or

e-
ho

ur
s]

Preempt Method

Kill
Chk-HDD
Chk-SSD
Chk-NVM

(a) Resource Wastage

 0

 2

 4

 6

 8

 10

P
ow

er
 [k

W
h]

Preempt Method
(b) Energy Consumption

 0
 2
 4
 6
 8

 10
 12
 14
 16

Low Priority High Priority

R
es

po
ns

e
Ti

m
e

[m
in

]

(c) Performance

Figure 8: Comparison of Different Preemption Policies on YARN.

node to minimize the interference. The RM maintains
a list of checkpoint queues for each node. When the RM
sends a ContainerPreemptEvent to an AM, it will add the
containers preempted to their nodes’ checkpoint queues.
When the RM acquires the resources from preempted con-
tainers, it removes those containers from their respective
queues. When calculating the checkpointing overhead, the
RM takes into account how many containers are in each
node’s checkpointing queue.

5.3 Evaluation

5.3.1 Kill-based vs. Checkpoint-based Preemption

0

0.25

0.5

0.75

1.0

 0 5 10 15 20 25 30
Response Time [min]

Kill
Chk-HDD
Chk-SSD
Chk-NVM

Figure 9: YARN Workload Job Performance CDF.

We evaluated and compared our checkpoint-based pre-
emption with Hadoop YARN’s current kill-based preemp-
tion on three different storage devices: HDD, SSD, and
NVM in an eight node Hadoop cluster (node specifications
described in Section 3.3.1). Each node can support 24 con-
current containers each with 1 CPU core and 2 GB of mem-
ory with 48 GB of NVM. We used a workload derived from
a Facebook trace [6] which contains 40 jobs (requiring 7,000
tasks). The jobs are split into either low priority or high
priority. These two types of jobs are co-located and dy-
namically share the resources in the YARN cluster via Dis-
tributedShell. Each task runs a k-means machine learning
program [9] that has a maximum memory footprint of ap-
proximately 1.8GB.

Figure 8 shows total resource wastage in terms of CPU
time, total energy consumption and average job response
time (i.e., the elapsed time between submission and com-
pletion time). The current YARN scheduler wastes about
28% of the total capacity in terms of CPU time by killing
low priority jobs to reclaim resources to high priority jobs.
Compared to kill-based preemption, our approach reduces

the resource wastage by 50% and 65% on HDD and SSD,
respectively. This reduced resource wastage may lead to
more jobs being scheduled and increased energy savings in
the long run. In particular, our approach reduces the energy
consumption by 21% and 29% on HDD and SDD, respec-
tively. If we use an NVM-based file system (PMFS in this
case), the reductions of resource wastage and energy con-
sumption go up to 67% and 34%, respectively.

The response time CDF shown in Figure 9 shows that
overall job performance is improved with checkpoint-based
preemption over the kill-based approach and using NVM
can achieve better performance. In terms of average per-
formance, checkpoint-based preemption reduces the average
response time of low priority jobs by 18% and 53% on HDD
and SSD, respectively; however, the performance of high
priority jobs with checkpointing on HDD and SSD is worse
than the kill-based approach. By using fast checkpoint with
NVM, response time of low priority jobs is reduced by 61%
while the performance of high priority jobs is comparable to
kill-based preemption.

5.3.2 Benefits of Adaptive Preemption
We ran another experiment to compare the basic checkpoint-

based preemption that always checkpoints a job with our
adaptive preemption, which leverages our optimized policies.
The average response time is shown in Figure 10. Adaptive
preemption reduces the response times of low priority jobs
by 28%, 16% and 20% over the basic checkpoint-base pre-
emption on HDD, SSD and NVM, respectively. The per-
formance improvement for high priority jobs is 7%, 8% and
14%. With the improvement, checkpoint-based preemption
with NVM achieves similar performance for high priority
job as the kill-based preemption while significantly improv-
ing low priority job performance and reducing resource and
energy usage. Figure 11 shows the response time CDF of
adaptive preemption and basic checkpoint-based preemp-
tion. Adaptive preemption improves the overall job perfor-
mance on all three storage medias over the basic checkpoint-
based preemption.

We also conducted a sensitivity analysis with our YARN
implementation similar to Section 3.3.3 and achieved sim-
ilar results. The adaptive policy is never worse than the
basic policy and can achieve optimal performance and re-
source efficiency with fast storage such as NVM. These re-
sults demonstrate that the adaptive policy is a useful tech-
nique to improve checkpoint-based preemption.

5.3.3 Overhead of Checkpoint-based Preemption

231

 0
 2
 4
 6
 8

 10
 12
 14

Low Priority High Priority

R
es

po
ns

e
Ti

m
e

[m
in

]
Basic

Adaptive

(a) HDD

 0
 1
 2
 3
 4
 5
 6
 7
 8

Low Priority High Priority

R
es

po
ns

e
Ti

m
e

[m
in

]

(b) SSD

 0
 1
 2
 3
 4
 5
 6
 7

Low Priority High Priority

R
es

po
ns

e
Ti

m
e

[m
in

]

(c) NVM

Figure 10: Performance Comparison of Basic Checkpoint-based Preemption vs. Adaptive Preemption.

0

0.25

0.5

0.75

1.0

 0 5 10 15 20 25 30
Response Time [min]

Kill
Basic

Adaptive

(a) HDD

0

0.25

0.5

0.75

1.0

 0 5 10 15 20 25 30
Response Time [min]

Kill
Basic

Adaptive

(b) SSD

0

0.25

0.5

0.75

1.0

 0 5 10 15 20 25 30
Response Time [min]

Kill
Basic

Adaptive

(c) NVM

Figure 11: Response Time CDF of Basic Checkpoint-based Preemption vs. Adaptive Preemption.

We evaluated the checkpoint-based preemption cost in
terms of CPU, storage and I/O overhead and the results are
shown in Figure 12. CPU overhead of preemption is mea-
sured as the percentage of CPU time spent on checkpoint-
ing and restoring preempted tasks and shown in Figure 12a.
Basic checkpointing incurs a 17% CPU overhead when used
with HDD while the CPU overheads of checkpointing on
SSD and NVM are 4% and 0.4%, respectively. When us-
ing adaptive checkpointing, the overhead of checkpointing
to HDD and SSD drops to 5.1% and 2.3%, respectively.
Overall, the CPU overhead is acceptable. With adaptive
preemption on NVM, the CPU cost is negligible.

We use the worst-case scenario to estimate the I/O over-
head of checkpointing. We assume that while checkpointing
a task, the checkpointing media’s entire bandwidth is used.
Using this estimation, the average bandwidth usage of basic
checkpointing is 37%, 14%, and 2.2% of the total available
bandwidth for HDD, SSD and NVM, respectively, as shown
in Figure 12b. Adaptive preemption decreases this band-
width usage on HDD and SSD to 15.7% and 8.3%, respec-
tively. This overhead reduction is due to the combination
of the adaptive policy checkpointing less frequently (opting
to kill recently started tasks instead) and also checkpointing
less data by leveraging incremental checkpointing. Similar
to CPU overhead, bandwidth usage associated with adap-
tive preemption on HDD and SSD are acceptably low, and
the overhead is negligible for NVM.

The average storage used for storing checkpoints during
preemption as a percentage of total storage capacity on HDD
and SSD is 5.1% and 7.6%, respectively. The maximum size
of storage required for storing the checkpoints during execu-
tion is the total memory capacity of the cluster if we need
to dump and store the entire cluster’s memory state. For
example, in our workload, there is a production job that is

larger than the capacity of the cluster; when this job is sub-
mitted and scheduled, it preempts all non-production jobs
running in the cluster and causes them to be checkpointed.
The storage requirement for our workload is about 10% of
the total storage capacity.

In summary, the overhead introduced by checkpointing-
based preemption is moderate or low. Additionally, while
the adaptive policy can improve the overall job performance,
it can also greatly reduce the CPU and I/O overhead asso-
ciated with checkpointing.

6. RELATED WORK
Some previous work has studied the negative effects of

preemptive scheduling in shared clusters [6, 16, 5]. Cavdar
et al. [4] analyzed task eviction events in the Google clus-
ter and found that most evictions were caused by priority
scheduling. They developed task eviction policies to mit-
igate wasted resources and response time degradation by
imposing a threshold on the number of evictions per task;
however, their work is based on simulation and does not
consider checkpointing overhead. Harchol-Balter et. al [13]
showed that preemptively migrating long-running processes
would reduce the mean delay time of incoming jobs.

Recently, application-specific checkpointing has been used
to improve resource management. For example, Hadoop
checkpoint-based scheduling proposes to save the progress of
certain Map tasks in a MapReduce job during preemption [1,
6, 19]; however, these systems are limited to checkpointing
only MapReduce applications. Further, these systems of-
ten need to modify application programs. In contrast, our
proposed method is application-transparent and a system-
level mechanism that can suspend/resume any application
without needing to modify the application code.

Traditional HPC or VM-based suspend/resume solutions

232

 0

 20

 40

 60

 80

 100

HDD SSD NVM

C
P

U
 O

ve
rh

ea
d

[%
] Basic

Adaptive

(a) CPU Overhead

 0

 20

 40

 60

 80

 100

HDD SSD NVM

I/O
 O

ve
rh

ea
d

[%
] Basic

Adaptive

(b) I/O Overhead

Figure 12: Overhead of Basic Checkpoint-based Preemption and Adaptive Preemption.

are coarse-grained and too expensive for emerging work-
loads, such as big-data applications, which require fine-grained
resource sharing and data locality. The most closely re-
lated work to ours is SLURM which can checkpoint using
BLCR [2]; however, BLCR is not portable across platforms
and is limited in the types of applications it can checkpoint.
Yank [23] and SpotCheck [22] offer high-availability to tran-
sient servers by storing VM state on backup servers, but
doing so can be expensive if revocations occur frequently.

Analysis of the Google cluster trace has been conducted
by [10, 18, 20]. The focus of these works was statistical anal-
ysis of the workload’s properties while our focus is on char-
acterizing and evaluating the resource efficiency and perfor-
mance impact of preemption in cluster scheduling.

System level checkpoint mechanisms such as BLCR, Linux-
CR and CRIU use file systems on disk to save checkpoints.
Prior work on NVM checkpointing [11, 16] has focused on
optimization techniques and architectural enhancements for
improving reliability and availability. Most of these mecha-
nisms have been used for fault-tolerance and none have been
applied in the context of performance improvement and re-
source efficiency in cluster resource management.

7. CONCLUSION AND FUTURE WORK
Resource management systems in shared clusters typically

employ preemption to recover from saturation and support
the QoS among multiple tenants. Current preemption mech-
anism is to simply kill preempted jobs. This can cause sig-
nificant waste and delay the response time of some jobs.

In this paper, we present an alternative non-killing pre-
emption that utilizes system-level, application-transparent
checkpointing mechanisms to preserve the progress of pre-
empted jobs in order to improve resource efficiency and ap-
plication performance in cluster scheduling. We implement
a prototype including an implementation on the Hadoop
YARN platform and conduct an extensive experimental study
via trace-driven simulation and real applications. We demon-
strate that (1) Preemption using application-transparent check-
pointing is feasible and able to reduce the resource and
power wastage and improve overall application performance
in shared clusters, even on slow storage like HDD. (2) Adap-
tive preemption that combines checkpoint and kill can fur-
ther improve the performance and reduce cost. (3) Checkpoint-
based preemption with slow storage may hurt the perfor-
mance of certain jobs. (4) By leveraging emerging fast stor-
age technologies such as NVM, checkpoint-based preemption
can improve application performance in all job categories
while achieving significant savings in resource usage.

In the future, we plan to apply the proposed approach to
a wider range of applications, including MapReduce and in-
vestigate how to implement more efficient checkpointing and
preemption using NVM as virtual memory. With the con-
tinued advances in storage technologies and OS-level check-
pointing support [8, 16], we anticipate even more savings in
the future as suspend-resume becomes faster and cheaper.

8. ACKNOWLEDGMENTS
This work is done mainly during Jack Li’s internship at

HP Labs. Jack Li and Calton Pu are partially supported by
NSF Foundation CNS/SAVI (1250260, 1402266), IUCRC/FRP
(1127904), CISE/CNS (1138666, 1421561) programs, and
gifts, grants, or contracts from HP, Singapore Government,
and Georgia Tech Foundation through the John P. Imlay,
Jr. Chair endowment.

9. REFERENCES
[1] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan,

S. Rao, and I. Stoica. True elasticity in multi-tenant
data-intensive compute clusters. SoCC ’12, pages
24:1–24:7, New York, NY, USA, 2012. ACM.

[2] D. Auble and J. Morris. Simple linux utility for
resource management, http://bit.ly/1FpdnQ1. 2013.

[3] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou,
Z. Qian, M. Wu, and L. Zhou. Apollo: Scalable and
coordinated scheduling for cloud-scale computing.
OSDI’14, pages 285–300, Berkeley, CA, USA, 2014.
USENIX Association.

[4] D. Çavdar, A. Rosà, L. Y. Chen, W. Binder, and
F. Alagöz. Quantifying the brown side of priority
schedulers: Lessons from big clusters. SIGMETRICS
Perform. Eval. Rev., 42(3):76–81, Dec. 2014.

[5] L. Cheng, Q. Zhang, and R. Boutaba. Mitigating the
negative impact of preemption on heterogeneous
mapreduce workloads. CNSM ’11, pages 189–197,
Laxenburg, Austria, Austria, 2011. International
Federation for Information Processing.

[6] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad,
N. Roberts, and P. Lin. Natjam: Design and
evaluation of eviction policies for supporting priorities
and deadlines in mapreduce clusters. SOCC ’13, pages
6:1–6:17, New York, NY, USA, 2013. ACM.

[7] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through
byte-addressable, persistent memory. SOSP ’09, New
York, NY, USA, 2009. ACM.

233

[8] CRIU. Checkpoint/restore in userspace,
http://criu.org. 2014.

[9] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March,
P. Ram, N. A. Mehta, and A. G. Gray. MLPACK: A
scalable C++ machine learning library. Journal of
Machine Learning Research, 14:801–805, 2013.

[10] S. Di, D. Kondo, and C. Franck. Characterizing cloud
applications on a Google data center. ICPP’13, Lyon,
France, Oct. 2013.

[11] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi.
Hybrid checkpointing using emerging nonvolatile
memories for future exascale systems. ACM Trans.
Archit. Code Optim., 8(2):6:1–6:29, June 2011.

[12] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System
software for persistent memory. EuroSys ’14, pages
15:1–15:15, New York, NY, USA, 2014. ACM.

[13] M. Harchol-Balter and A. B. Downey. Exploiting
process lifetime distributions for dynamic load
balancing. ACM Trans. Comput. Syst., 15(3):253–285,
Aug. 1997.

[14] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. NSDI’11, pages 295–308, Berkeley,
CA, USA, 2011. USENIX Association.

[15] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. EuroSys ’07, pages 59–72,
New York, NY, USA, 2007. ACM.

[16] S. Kannan, A. Gavrilovska, K. Schwan, and
D. Milojicic. Optimizing checkpoints using nvm as
virtual memory. IPDPS’13, pages 29–40, May 2013.

[17] M. H. Lankhorst, B. W. Ketelaars, and R. Wolters.
Low-cost and nanoscale non-volatile memory concept
for future silicon chips. Nature materials,
4(4):347–352, 2005.

[18] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R.

Das. Towards characterizing cloud backend workloads:
insights from Google compute clusters. SIGMETRICS
Perform. Eval. Rev., 37(4):34–41, Mar. 2010.

[19] J.-A. Quiane-Ruiz, C. Pinkel, J. Schad, and
J. Dittrich. Rafting mapreduce: Fast recovery on the
raft. ICDE’11, pages 589–600, April 2011.

[20] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch. Heterogeneity and dynamicity of
clouds at scale: Google trace analysis. SoCC ’12,
NYC, NY, USA, 2012. ACM.

[21] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for
large compute clusters. EuroSys’13, pages 351–364,
Prague, Czech Republic, 2013.

[22] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy.
Spotcheck: Designing a derivative iaas cloud on the
spot market. In Proceedings of the Tenth European
Conference on Computer Systems, EuroSys ’15, pages
16:1–16:15, New York, NY, USA, 2015. ACM.

[23] R. Singh, D. Irwin, P. Shenoy, and K. Ramakrishnan.
Yank: Enabling green data centers to pull the plug. In
Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
13), pages 143–155, Lombard, IL, 2013. USENIX.

[24] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler. Apache
hadoop yarn: Yet another resource negotiator. In
Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 5:1–5:16, New York, NY,
USA, 2013. ACM.

[25] J. Wilkes. More Google cluster data. Google research
blog, http://bit.ly/1A38mfR. Nov 2011.

[26] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. HotCloud’10, Berkeley, CA, USA,
2010. USENIX Association.

234

