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Abstract—High resource utilization is an important goal in
achieving high return on investment in cloud environments.
Guaranteed quality of service (QoS) is an important goal for
web-facing applications such as e-commerce. Achieving both
high utilization and high QoS simultaneously is a significant
challenge, since high utilization often implies more QoS failures
such as long response times. In this paper, we adopt a profit
model based on response time (i.e., decreasing or negative rev-
enues for increasing query answer response time) to represent
the QoS requirements. Our data shows that such a profit model
often yields different analytical results compared to traditional
performance metrics such as average throughput.

Using extensive experimental measurements (on the same
hardware platform and software stack) of the standard RUB-
BoS n-tier benchmark, we study the impact of different
allocations of software resources such as the size of thread
pools in various servers in an n-tier system. First, the profit
model emphasizes the importance of appropriate allocations,
showing a difference of up to 48.6% when system utilization
is high (over 80%). Second, our experiments show that over-
allocation of thread pool may lead to unnecessary consumption
of critical resources (e.g., CPU) that reduce profits by up to
84.8%. Third, we found that under-allocation of thread pool
in one server may lead to under-utilization of several servers
downstream in an n-tier system, also reducing profits by up
to 52.8%. Our data shows that the best allocation depends on
several system parameters, including resource availability. We
designed an adaptive algorithm to find the best allocations and
show its effectiveness through our experiments and analyses.

Keywords-bottleneck; configuration; n-tier; profit model;
software resource

I. INTRODUCTION

Infrastructure as a service (IaaS) provisioned by cloud
computing environments offer lower costs through economy
of scale in shared data centers. Cloud users can reduce or
eliminate capital expenditures by a commonly adopted pay-
as-you-use cost model, since they can add more hardware
resources if needed during peak workloads. Virtualized
platforms such as VMware and Xen are typically used to
consolidate users and applications on the same hardware,
increasing the hardware utilization and consequently the
return on investment (Rol) for cloud providers. Unfortu-

nately, anecdotal and reported average utilization is as low
as 18% [12], primarily due to the need to preserve quality
of service objectives specified in service level agreements
(SLAs). Consequently, one of the critical research and
practical questions in the fulfillment of TaaS model is the
level of hardware utilization achievable in a cloud while
maintaining the quality of service requirements of users and
applications that share the same underlying infrastructure.

The first contribution of this paper is the adoption of
a set of profit-based performance criteria derived from
typical SLAs [11] in the evaluation of web-facing application
performance. The profit model emphasizes both the positive
contribution of queries returned within a short response time
window (typically within a fraction of a second) and the
penalties of very long response times (e.g., more than 2
seconds). The differences between profit-based evaluation
criteria and traditional performance metrics (e.g., throughput
without regard to response time) become significant at high
resource utilization levels. Our analysis shows that despite
a relatively flat throughput curve, rapid deterioration of
response time quickly reduces profits at well-defined high
resource utilization levels, demonstrating the importance
of including response time in the evaluation of trade-offs
between high quality of service and high resource utilization
in IaaS clouds. We have found that for the same workload
and hardware configuration, different software allocations
can result in profit differences of up to 84.8%.

The second contribution of this paper is an experimental
demonstration of the complexity of interactions among var-
ious systems factors at different system levels that affect
the performance of web-facing applications. Concretely,
we run more than 500 of experiments on the RUBBoS
benchmark [1], based on Slashdot, implemented in a 4-tier
configuration. In these experiments, the hardware platform
and systems software (e.g., operating system) remain fixed.
By varying the software resources (e.g., the sizes of thread
pool and database connection pool in the Tomcat application
server), we observe significantly sub-optimal performance
(in terms of profits) for two simple allocation algorithms:



Function Software | ‘ Hardware Components
Web Server Apache 2.0.54
Application Server |Apache Tomcat 5.5.17 Server type PC3000 in Emulab
Cluster middleware |C-JDBC 2.0.2 Processor Xeon 3GHz 64-bit
Database server MySQL 5.0.51a
Sun JDK jdk1.6.0 14 Memory 2GB
Operating system Redhat FC4 Network lepS

Kernel 2.6.12
System monitor Systat 7.0.2 Disk 2*146GB I0,000rpm
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(b) Hardware node setup
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Figure 1: Details of the experimental setup on the Emulab cluster

conservative (small number of threads to minimize resource
consumption) and liberal (large number of threads to max-
imize concurrent execution). Sub-optimal allocations of the
application server’s thread pool and database connection
pool can decrease performance by 5 to 30 percent which
results in a profit loss between 29 and 85 percent in our
enhanced SLA profit model.

Our experiments also show that an iterative algorithm
can find a very good allocation of software resources to
maximize profit by avoiding under-allocation (conservative)
and over-allocation (liberal). Perhaps unsurprisingly, the best
allocation remains highly dependent on the workload distri-
bution and profit model adopted in the evaluation. In our
example, we use an enhanced SLA model which specifies
different profits and penalties depending on the response
time of the application.

The results described in this paper are significant for
future research on high utilization of IaaS clouds in two
ways. First, it is likely that the future work will benefit
from a profit-based evaluation, which sharpens the effective
performance impact, instead of classic throughput analysis
without regard to response time. Second, the highly non-
trivial interactions among the system components and sys-
tem layers shows the challenges (many sub-optimal configu-
rations) and opportunities (significant gains if “done right”)
of consolidating mission-critical applications with SLA at
high resource utilization states.

The rest of the paper is structured as follows. Section II
provides background into our experimental setup and Ser-
vice Level Agreements. Section III introduces different soft
resource allocation strategies and evaluates their effects on
performance and profit and gives an algorithm to optimally
allocate soft resources. Section IV summarizes related work
and Section VI concludes our paper.

II. BACKGROUND

A. Experimental Setup

We run an n-tier benchmark (RUBBoS) in Emulab
testbed [2]. RUBBOS is a standard n-tier benchmark based
on bulletin board applications such as Slashdot. The RUB-
BoS benchmark application can be implemented as three-
tier (web server, application server, and database server)

or four-tier (addition of clustering middleware such as C-
JDBC [7]) system. The workload consists of 24 different
interactions such as view story. The benchmark includes
two kinds of workload modes: browsing-only and read/write
interaction mixes. Performance measurements (e.g., CPU
utilization) are taken during the runtime period using SysStat
at one second granularity. We use the functionality provided
by JVM to monitor thread status in Java applications. To
conveniently monitor the utilization of the DB connection
pool, we let all servlets share a global DB connection pool
instead of an individual connection pool for each servlet.

Figure 1 outlines the choices of software components,
hardware node, and a sample network topology used in our
experiments. The experiments were carried out by allocating
a dedicated physical node to each server. We use a four-
digit notation #W/#A/MH#C/#D to denote the number of web
servers, application servers, clustering middleware servers,
and database servers. A sample topology of experiments
is shown in Figure 1(c). In our experiments, we focus on
how the allocation of soft resources affects n-tier system
performance. Thus, we change the allocation of those soft
resources by changing thread pool size in Apache servers,
the thread pool and DB connection pool size in Tomcat
servers. For each hardware provisioning #W/#A/#C/#D, we
use #WT-#AT-#AC to represent the thread pool size in web
server, the thread pool size in application server, and the DB
connection pool size in application server. For example, the
hardware provisioning can be 1/2/1/2. The corresponding
soft resource allocation #WT-#AT-#AC can be 200-100-
100, which means the thread pool size in a web server,
the thread pool size and the DB connection pool size in
each application server is 200, 100, 100, respectively. The
allocation of other soft resources are fixed in order to limit
the exponential experiment space.

B. Profit Model

In e-commerce applications, the response time for users
can directly impact the profit for that application. Amazon
found that for every 100ms a page took to load, it loses 1%
in sales. Akamai reported that 40% of users will abandon
a site that takes more than 3 seconds to load and 47%
expects a website to load in 2 seconds or less. Typically
in cloud environments, service level agreements (SLAS)



are used by the service provider to outline its revenue
model to the customer and includes the earnings of the
provider which includes revenue during SLA compliance
and penalties during SLA violations.

In our previous work, we studied a simplified SLA model
solely based on a single response time threshold to illus-
trate the profit trade-offs between throughput and response
time [15]. We showed that increasing throughput without
regards to other factors can actually lead to decreased
provider revenue due to the lower revenues incurred by
high response times. In this simplified SLA model, requests
that had response times below or equal to the set threshold
is termed goodput. Requests with higher response time
than the threshold is badput. The traditional definition of
throughput is then the sum of goodput and badput.

v if0<rt; <ty
vV —C1 ift1<7’ti§t2
rev(rt;) = . 6]
vV —Cp ift, <rt; <tpya
P otherwise
provider revenue = Z rev(rt;) (2)

K2

In this paper, we present an enhanced SLA profit model
which considers multiple response time thresholds, with
each response time interval generating a different profit value
(see Equation 1). In this equation, rt; means the response
time of the ¢th request, t1,t2, ...t,, represent response time
boundaries. Each processed request generate value v by
default; the earning of the request is v deducted by c;,
which is the late charge of the request. Once the response
time rt; exceeds a certain threshold, a penalty p is charged
for the request. The final revenue of the service provider is
summation of the earnings of all the processed requests (see
Equation 2).

The enhanced profit model holistically emphasizes both
the positive contribution of queries with short response
times (typically within a fraction of a second) and the
penalties of queries with very long response times (e.g.,
more than 2 seconds). This profit model is appropriate
for many e-commerce applications which sees variations in
profit depending on request response times (e.g., Amazon).
Table I illustrates an instance of the enhanced profit model.
In the rest of the paper we will use this model to conduct
our profit-based performance analysis. We note that in this
model, the service provider incurs a penalty in profit when
a request’s response time is greater than two seconds. This
penalty may be considered harsh since it is greater than the
maximum revenue, but it is actually quite conservative. In
real applications such as Rackspace [3], the penalty incurred
on the provider is much higher (e.g. Rackspace incurs a 5%
penalty in monthly profits for every 30 minutes of downtime
which equates to 0.068% of the month).

| Response time interval | Revenue/Penalty

[0s, 200ms] $0.27
(200ms, 500ms] $0.20
(500ms, 1s] $0.13
(1s, 2] $0.07

> 28 -$0.33

Table I: A sample profit model used in our experiments.

III. PROFIT ANALYSIS OF SOFT RESOURCE
ALLOCATIONS

A. Impact of Soft Resource Allocations Using Different
Performance Models

Soft resources refer to system software components that
use hardware resources (CPU, memory, disk and network)
or synchronizes the use of hardware resources [15]. For
example, threads are soft resources that use CPU and TCP
connections use network I/O. The goal of soft resources is
to increase hardware utilization by creating a means to share
them. Therefore, the allocation of soft resources can impact
the efficiency of hardware utilization.

In this section, we evaluate the impact of soft resource
allocations on system performance using three different
performance models: the traditional throughput model, the
goodput model, and our profit model (see Section II-B). Our
results show that, while the performance impact of different
soft resource allocations is insignificant using the traditional
throughput model or even the goodput model, such impact
becomes momentous once our profit model is applied. The
hardware configuration of the experiments in this section is
1/4/1/4. We compare the performance of two different soft
resource allocations (400-150-60 and 400-6-6). We note that
the 400-150-60 allocation is considered a good choice by
practitioners from industry.

Figure 2(a) shows the throughput comparison between
the two soft resource allocations from workload 6,000 to
7,800. Such workload range depicts the plateau of the system
throughput before it stops increasing. This figures shows that
only until workload 6,800 these two soft resource allocation
cases show the throughput difference. For example, the 400-
6-6 case achieves only 8.0% higher throughput than that of
the the 400-150-60 case at workload 7,800.

Figure 2(b) shows the goodput (with 1 second threshold)
comparison for the same two soft resource allocations. In
this figure, we see that the goodput for either of these
two cases begins to decrease after certain workload; this is
because of the increased number of badput as the workload
increases while the system throughput keeps the same (due
to saturation). At workload 7,800, the 400-6-6 case achieves
20.2% higher goodput than the the 400-150-60 case.

Figure 2(c) depicts the two soft resource allocations when
applying our profit model (see Table I). Although the shape



1000,

1000,
X XXX X
T - X X
8 s00] S 80d] X
5 <
=3
s g
3 600] S 600]
‘E Q
—6—400-6-6 —6—400-6-6
X 400-150-60 X 400-150-60
400 400
6,000 7,800 6,000

6,600 7,200
Workload [# users?

6,600 7,200
Workload [# users?

7,800

X X
2007 X
B 150 XX
z
& 100] <ox
50 _o—400-6-6
X 400-150-60
0 T T T T ]
6,000 7,800

" 8600 7200
Workload [# users?

(a) Throughput difference at WL 7,800 is (b) Goodput(ls) difference at WL 7,800 is (c) Profit difference using our profit model

8.0%.

20.2%.

(see Table I) at the WL 7,800 is 48.6%.

Figure 2: Performance comparison between two soft resource allocations with 1/4/1/4 (400-x-y) configuration. The number
400 means the thread pool size in one web server; x and y means the Tomcat thread pool size and DB connection pool size
respectively. Three different performance models are used: (a) throughput model, (b) goodput model, and (c) profit model.

This figure shows the significant impact of soft resource allocations on system performance using our profit model.

of the two curves is similar to the goodput curves in Figure
2(b), note that the profits for the two allocations at workload
7,800 actually differ by 48.6%. Unlike goodput which only
considers requests below a certain threshold as being valid,
our profit model considers requests for all response times,
but separates them out into five different response time in-
tervals. Requests with lower response times are rewarded by
having a higher profit, while requests with higher response
times have lower profit and even a penalty on profit if the
response time is greater than two seconds. Even though
the throughputs and goodputs of the two allocations differ
by 8.0% and 20.2% respectively, the economic difference
between the two is a staggering 48.6%. Therefore, it is
important to consider soft resource allocations not only in
terms of throughput and goodput, but also profit.

In the next sections, we look at two more scenarios where
conservative and liberal allocations of soft resources can be
sub-optimal in terms of performance and profit.

B. Conservative Allocation of Soft Resources

The first allocation strategy is a conservative strategy that
aims to minimize the amount of software resources as to
ensure that the system is not overloaded. Setting a small al-
location of soft resources does mitigate the overhead caused
by soft resources [15]; however, too few soft resources
can limit software performance which creates a software
bottleneck analogous to a hardware bottleneck when not
enough resources are available.

In this experiment, we aim to create a software bottleneck
by limiting the number of threads in the Tomcat thread pool.
The thread pool in Tomcat is varied between 6 to 20 threads
while the number of threads in Apache server and the num-
ber of DB connections is fixed to 400 and 200 respectively.
We purposefully set the number of threads in Apache and
number of DB connections to be large so that they will not
be the system bottleneck. The hardware configuration we
use is 1/2/1/2. Figure 3(a) shows the throughput of three
software configurations. At every workload, decreasing the

thread pool from 20 to 6 leads to decreases in throughput.
This throughput decrease is due to lower hardware utilization
when less threads are used; the exact reason for this is for
small thread pool values in Tomcat, all threads are always
being used even though the CPU is not fully utilized. For
curious readers, we have analyzed this phenomenon in-depth
in another paper [15]. Specifically, the system throughput
decreases 13.6% when we decrease the number of Tomcat
threads from 20 to 6.

Even though the throughput decreases from the 400-20-
200 to the 400-6-200 allocation, it might be overlooked
because the percentage difference is only 13.6%. Figure 3(b)
shows the goodput for all configurations for a goodput
threshold of one second. Similar to throughput, at every
workload, goodput decreases as the thread pool in Tomcat
decreases; At workload 6,800, the system goodput decreases
by 30.4% when we derease the thread pool size in Tomcat
from 20 to 6, more than double the throughput percent
decrease. This percent decrease is magnified even more
when looking from a profit perspective.

Figure 3(c) shows the profit from each software config-
uration using our profit model. The profit model’s curves
have a similar shape to the curves in the goodput graph of
Figure 3(b). Similar to the goodput comparison, the 400-6-
200 soft resource allocation configuration is shown to have
the lowest profit at the 6,800 workload while the 400-20-200
soft resource allocation configuration has the highest profit
at workload 6,800. The values for the two are $12.44 and
$81.83 respectively, a difference of 84.8%.

Figure 3(d) illustrates the performance degradation be-
tween the 400-6-200 and 400-20-200 configurations in terms
of percent difference. The throughput percent difference be-
tween the two configurations slightly increases from 5.4% to
13.5% as workload increases; the goodput percent difference
is more than double the throughput percent difference at
every workload and goes from 15.4% to 30.4%. The profit
model reveals the most astonishing difference between the
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than 3s, which generate significant amount
of negative profit in our profit model.
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Figure 3: Performance degradation due to conservative allocation of soft resources with 1/2/1/2 (400-x-200) configuration.

x means the Tomcat thread pool size; we decrease x from 20 to 6.

two configurations; the profit difference ranges from 29.2%
to 84.8%. For the same hardware configuration, there can be
slight throughput and modest goodput degradation depend-
ing on how soft resources are allocated, but it can resultingly
yield large differences in profit. The huge difference in profit
can be explained by looking at each individual request.

Figure 3(e) shows the response time histogram of the
400-6-200 configuration at workload 6,800. There is a large
number of requests (approximately 164,000) that take longer
than two seconds to process which accounts for 32% of the
total number of requests in the experiment. Figure 3(f) shows
the response time histogram of the 400-20-200 configuration
at workload 6,800. The 400-20-200 configuration has a
larger number of requests than the 400-6-200 configuration
completed within two seconds and only 18% (approximately
110,000) of the total requests have a higher response time
than two seconds. One interesting phenomenon to note is the
spike in requests with a response time greater than 3 seconds
for both configurations. Those requests are due to TCP
retransmissions and we discuss this more in a future work.
As workload increases, there will be a larger percentage of
requests that timeout and are retransmitted, which causes
our profit to peak and decrease after a certain workload.

C. Liberal Allocation of Soft Resources

The second allocation strategy we employ is liberally
setting a large capacity of software resources so that we
ensure that the system is not being bottlenecked by software
resources. This strategy illustrates the differences between
hardware and software resources. Unlike hardware resources
which do not consume resources when they are idle, soft-
ware resources may still use system resource (e.g., CPU
and memory) when they are idle; however, the cost of
unused soft resources is usually considered to be negligible,
so setting a high soft resource capacity when allocating
resources is often reasonable. In our experiments, we found
that setting a high soft resource allocation can lead to severe
degradation of system performance.

In this experiment, we vary the size of the DB connection
pool in Tomcat from 6 to 200 while keeping the thread pool
in Apache and Tomcat fixed at 400 and 200 respectively.
We also use a hardware configuration of 1/4/1/4.

Figure 4(a) shows the throughput of three different soft
resource allocations from workload 6,000 to 7,800. Note that
the 400-200-200 configuration here is the same configuration
used in the previous section; however, the hardware in
this section has changed. At workload 7,800, the highest
throughput is achieved with the configuration (400-200-6)
with the lowest number of threads in the DB connection
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Figure 4: Performance degradation due to liberal allocation of soft resources with 1/4/1/4 (400-200-x) configuration. X means

the Tomcat DBconn pool size; we increase x from 6 to 200.

pool while the lowest throughput is achieved with the con-
figuration (400-200-200) with the highest number of threads
in the DB connection pool. At 7,800, the C-JDBC server’s
CPU becomes the bottleneck for configurations with a high
DB connection pool number. This is due to the time the C-
JDBC server spends for JVM garbage collection. A more
in-depth analysis of this issue can be found in [15]. One
interesting thing to note is that the 400-200-6 configuration
does not achieve the highest throughput for all workloads.
For workloads 6,000 to 6,800, the 400-200-20 configuration
actually yields slightly greater throughput than the 400-200-
6 configuration. This provides motivation for administrators
to monitor the traffic to their system and to adjust the soft
resource allocations in their systems accordingly.

We show the 500ms goodput for each configuration in
Figure 4(b). At the 7,800 workload, similar to the throughput
comparison, the 400-200-6 comparison yields the highest
goodput out of all configurations. In addition, the 400-200-
20 configuration again outperforms the 400-200-6 in terms
of goodput for workloads between 6,000 to 6,800 users;
however, interestingly, the 400-200-20 configuration takes
a large dip after workload 6,800 and becomes the worst
performing configuration at workload 7,800. Figure 4(c)
shows the profit for the same configurations. The profit is
highest for 400-20-20 between workloads 6,000 to 6,800.

After workload 6,800, the 400-200-6 configuration achieves
the highest profit. Similar to the previous profit comparison
in Figure 3(c), each configuration has a peak profit before
it decreases as workload increases.

Figure 4(d) shows the performance degradation between
the 400-200-6 and 400-200-200 configurations. The degra-
dation for throughput, goodput, and profit is almost equal
for workloads 6,000 to 6,400. Starting from workload 6,600,
we see greater performance degradation in terms of goodput
and profit. At the 7,800 workload, the throughput, goodput,
and profit percent difference between the two allocations
is 13.6%, 28.3%, and 52.8% respectively. The performance
degradation in this liberal allocation scenario mirrors the
conservative allocation scenario where we see almost a
double amplification of degradation from throughput to
goodput and from goodput to profit.

Finally, Figure 4(f) and Figure 4(e) show the response
time histograms of the 400-200-6 and 400-200-200 config-
urations. A majority of the requests are completed within
500ms for the 400-200-6 configuration and only 11.4% of
the requests have response times greater than three seconds.
In comparison, 23.7% of the total requests for the 400-200-
200 configuration take longer than three seconds to process.



Algorithm 1: Pseudo-code for soft resource allocation
algorithm to maximize profit.

1 procedure FindGoodSoftResource(workload, profitModel)
2 profitnew =0, profitmaz = -1;

3 S=S5y, H=Hoy;

4 while profitnew > profitmaz do

5 profitmaz = profitnew;

6 (RT4;s¢) = runExperiment(H, S, workload);

7 profitnew = calculateProfit( RTy;s¢, profitModel);
8 if (profitnew > profitmas) then

9 / * find better allocation * /

profitmaz = profitnew;

S =285,

12 else

/ * find best allocation * /

return (profitmaz, S/2);

15 end

16 end

D. Soft Resource Allocation Algorithm

So far we have shown that both conservative and liberal
soft resource allocations in an n-tier system may lead to sig-
nificant performance degradation, especially when applying
a response time aware profit model. This is due to the fact
that soft resources directly impact the efficiency of critical
system resource usage (e.g., CPU) !; overly conservative
soft resource allocations under-utilize the critical system
resources while excessively liberal soft resource allocations
waste critical system resources [15]. In this section we will
discuss a practical iterative algorithm for a soft resource
allocation that maximizes profit given a fixed hardware
configuration and profit model.

Our algorithm assumes that the critical hardware resource
of the system is known a priori > and mainly focuses on the
iterative search process of soft resource allocations for profit
maximization. Algorithm 1 shows the pseudo-code for the
algorithm and a detailed description is given below.

The key idea of the algorithm is to iteratively in-
crease the allocation of soft resources that directly use
the critical system resource until reaching the maxi-
mum profit. The initial soft resource allocation and hard-
ware provisioning are Sy and Hj, respectively. Func-
tion runExperiment(H,S, workload) initiates an ex-
periment with input hardware/software configuration at
a specific workload, and at the same time, the re-
sponse times of all requests are recorded. Function
calculate Profit( RTy;s¢,profitModel) calculates the profit
given the response time distribution and predefined profit
model. If the new profit profit,.., is larger than the previous
maximum profit profit,.., we find a better soft resource
allocation. In this case, the entire process is repeated by
doubling the soft resource allocations. Otherwise the entire

ICritical system resource means the bottleneck resource of a system,
which is the main determinant of system performance.

2This step can be done using the critical system resource algorithm
introduced in [15].
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Figure 5: Searching of the “best” soft resource allocation
for 1/4/1/4 (400-200-x) configuration using our algorithm. x
means Tomcat DBconn pool size. This figure shows the best
allocation of DB connections is workload dependent given
our profit model; the DBconn-16 case outputs the highest
profit in workload range 6,000 to 7,000 while the DBconn-
8 case performs the best after workload 7,000.

process ends and profit,,.. is returned with the best soft
resource allocations S. Although our paper focuses mainly
on maximizing profit through better software resource allo-
cation on the same hardware configuration, it is important
to note that our algorithm can also adapt to finding a profit-
maximizing hardware configuration if you substitute H for
S in the equation’s while loop. Our previous paper [10] has
looked into finding the best hardware configuration through
scale out to maximize profit.

Figure 5 shows the results of applying the algorithm to
the previous 1/4/1/4 configuration case (see Section III-C).
In this configuration, the critical system resource is the
CJDBC CPU. Since the number of active threads in CIDBC
(that directly use the CJDBC CPU) is controlled by the DB
connection pool size in the Tomcat App tier, we run our
algorithm for the “best” number of DB connections given
the testing workload and our profit model. We note that we
allocate a large number of threads in the Apache web tier
and the Tomcat App tier in order to avoid hardware resource
under-utilization 3. This figure shows that the 16 DBconn
case outputs the highest profit in the workload range from
6,000 to 7,000 while the 8 DBconn case outputs significantly
higher profit than the other cases once the workload exceeds
7,000. The results show that the best allocation remains
highly dependent on the workload in the evaluation.

IV. RELATED WORK

The impact of soft resource allocations on system perfor-
mance has been studied in [6], [14], [15]. Wang et al. [15]
conducted experimental analysis of the impact of soft re-
source allocations on n-tier system throughput and goodput.

3Since the Apache web tier and the Tomcat App tier is not the bottleneck
of the system, it is necessary to allocate more soft resources to buffer the
large fluctuations in request traffic from clients [15].



Franks et al. [6] propose a layered queuing network which
models the simultaneous soft/hardware resource possession
in an n-tier system and develop a framework for systematic
detection of bottlenecks caused by soft resources in the
system. Urgaonkar et al. [14] propose a flexible queuing
model to estimate how to allocate resources to each tier of an
n-tier application by considering realistic factors (e.g., load
imbalance, concurrency limits). All these previous works
focus on the impact of soft resource allocations on traditional
performance metrics (e.g., throughput) rather than profit.
As shown in the paper, the differences between profit-
based evaluation criteria and traditional performance metrics
become significant at high resource utilization levels. For
example, our results show that the profit-maximizing soft
resource allocation is highly workload dependent.

Profit based performance analysis for distributed systems
has been studied before. For example, Malkowski et al. [10]
presented a configuration management tool which combines
empirical data and SLA and find the best hardware con-
figurations to maximize the profit. Xi et.al [5] proposed a
profit model to describe revenues specified by the Service
Level Agreement (SLA) and costs generated by leased re-
sources. Lee et al. [9] discussed profit aware service request
scheduling. Konstantinos et. Al [13] propose an interesting
work which is based on two premises: the cloud-consumer
always has a budget and physical hardware resources are
limited. Different from these previous works, we mainly
focus on soft resource allocations on profit maximization.
More specifically, our work is complementary to the previ-
ous hardware-based profit maximization research.

Software misconfiguration of n-tier systems have been
studied in [4], [8]. Attariyan et al. [4] present a tool that
locates the root cause of configuration errors by applying
dynamic information flow analysis within process (mainly)
in the runtime. Kiciman et al. [8] describe Pinpoint, a
methodology for automating fault detection in Web appli-
cations by identifying which components in a distributed
system are most likely to be the cause of a fault. All these
work differs from our work in that they focus more on faults
or anomaly behavior of system caused by misconfiguration
of software, rather than the performance problem.
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VI. CONCLUSION

Achieving simultaneously high resource utilization and
guaranteed quality of service (QoS) is an important goal
and significant challenge in cloud environments. Using a
response-time based profit model, we showed that modest
differences in traditional performance metrics (e.g., average
throughput) often translate into much more significant dif-
ferences in profits. This sensitive profit model showed the
significant impact of different allocation policies in an ex-
perimental study of soft resource allocation impact on n-tier
applications using the RUBBoS benchmark. Over-allocation
of soft resources (thread pool size in a server) causes
unnecessary resource consumption, and reduces profits when
the resource is near saturation. Under-allocation of soft
resources causes potential under-utilization of downstream
servers, also reducing profits. Our data shows that the best
soft resource allocation is highly dependent on several sys-
tem parameters, including the workload distribution, system
configuration, and profit model adopted in the evaluation.
Our results show that the overall profits (economic goals)
of a cloud environment should be taken into consideration
explicitly when deciding on resource allocation (maximiz-
ing utilization) to optimize n-tier application performance
(maximizing throughput while guaranteeing QoS).
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