
Lightning in the Cloud: A Study of Very Short Bottlenecks on
n-Tier Web Application Performance

Qingyang Wang∗†, Yasuhiko Kanemasa‡, Jack Li∗, Chien-An Lai∗,
Chien-An Cho∗,Yuji Nomura‡, Calton Pu∗

∗College of Computing, Georgia Institute of Technology
†Computer Science and Engineering, Louisiana State University
‡System Software Laboratories, FUJITSU LABORATORIES LTD.

Abstract

In this paper, we describe an experimental study of very
long response time (VLRT) requests in the latency long
tail problem. Applying micro-level event analysis on
fine-grained measurement data from n-tier application
benchmarks, we show that very short bottlenecks (from
tens to hundreds of milliseconds) can cause queue over-
flows that propagate through an n-tier system, resulting
in dropped messages and VLRT requests due to time-
out and retransmissions. Our study shows that even at
moderate CPU utilization levels, very short bottlenecks
arise from several system layers, including Java garbage
collection, anti-synchrony between workload bursts and
DVFS clock rate adjustments, and statistical workload
interferences among co-located VMs.

As a simple model for a variety of causes of VLRT
requests, very short bottlenecks form the basis for a dis-
cussion of general remedies for VLRT requests, regard-
less of their origin. For example, methods that reduce
or avoid queue amplification in an n-tier system result
in non-trivial trade-offs among system components and
their configurations. Our results show interesting chal-
lenges remain in both causes and effective remedies of
very short bottlenecks.

1 Introduction

Wide response time fluctuations (latency long tail prob-
lem) of large scale distributed applications at moderate
system utilization levels have been reported both in in-
dustry [18] and academia [24, 26, 27, 38, 43]. Occasion-
ally and without warning, some requests that usually re-
turn within a few milliseconds would take several sec-
onds. These very long response time (VLRT) requests
are difficult to study for two major reasons. First, the
VLRT requests only take milliseconds when running by
themselves, so the problem is not with the VLRT re-

quests, but emerges from the interactions among system
components. Second, the statistical average behavior of
system components (e.g., average CPU utilization over
typical measurement intervals such as minutes) shows all
system components to be far from saturation.

Although our understanding of the VLRT requests has
been limited, practical solutions to bypass the VLRT re-
quest problem have been described [18]. For example,
applications with read-only semantics (e.g., web search)
can use duplicate requests sent to independent servers
and reduce perceived response time by choosing the ear-
liest answer. These bypass techniques are effective in
specific domains, contributing to an increasingly acute
need to improve our understanding of the general causes
for the VLRT requests. On the practical side, our lack of
a detailed understanding of VLRT requests is consistent
with the low average overall data center utilization [37]
at around 18%, which is a more general way to avoid
VLRT requests (see Section 4). The current situation
shows that VLRT requests certainly merit further inves-
tigation and better understanding, both as an intellectual
challenge and their potential practical impact (e.g., to in-
crease the overall utilization and return on investment in
data centers).

Using fine-grained monitoring tools (a combination
of microsecond resolution message timestamping and
millisecond system resource sampling), we have col-
lected detailed measurement data on an n-tier benchmark
(RUBBoS [6]) running in several environments. Micro-
level event analyses show that VLRT requests can have
very different causes, including CPU dynamic voltage
and frequency scaling (DVFS) control at the architec-
ture layer, Java garbage collection (GC) at the system
software layer, and virtual machine (VM) consolidation
at the VM layer. In addition to the variety of causes,
the non-deterministic nature of VLRT requests makes the
events dissimilar at the micro level.

Despite the wide variety of causes for VLRT requests,
we show that they can be understood through the concept
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Figure 1: System throughput increases linearly with
the CPU utilization of representative servers at in-
creasing workload.
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Figure 2: System throughput and average response
time at increasing workload. The wide response time
fluctuations are not apparent since the average re-
sponse time is low (<200ms) before 12000 clients.

of very short bottleneck, defined as a very short period of
time (on the order of tens of milliseconds), during which
the CPU is saturated. When considered at the abstrac-
tion level of very short bottlenecks, the phenomenon of
VLRT requests becomes reproducible: Even though the
actual VLRT requests may not be literally the same ones,
a similar number of VLRT requests arise reliably accord-
ing to the timeline in experiments. Consequently, we are
able to show concrete evidence that ties convincingly the
various causes mentioned above to VLRT requests. We
compare very short bottlenecks to lightning, since they
are very short in duration (tens of milliseconds), but have
a long impact on the VLRT requests (several seconds).

The main contribution of the paper is a set of micro-
level event analyses of fine-grained experimental data of
the RUBBoS benchmark in several environments. The
initial steps of the micro-level event analyses are similar:
(1) VLRT requests are detected of an n-tier system with
moderate utilization; (2) at the same time, long request
queues form in the Apache overflowing TCP buffer, that
causing dropped packets and retransmission after 3 sec-
onds; (3) the long queues in Apache formed because
the downstream servers (Tomcat) have completely full
queues during that time; (4) long queues in Tomcat
servers are created by very short bottlenecks, in which
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Figure 3: The percentage of VLRT requests starts to
grow rapidly starting from 9000 clients.

the server CPU becomes saturated for a very short period
of time. We note that even though the bottlenecks are
very short, the arrival rate of requests (thousands per sec-
ond) quickly overwhelm the queues in the servers. The
final step (5) of each micro-level event analysis identi-
fies a specific cause associated with the very short bottle-
necks: Java GC, DVFS, and VM consolidation.

We further provide a systematic discussion of reme-
dies for VLRT requests. Although some causes of VLRT
requests can be “fixed” (e.g., Java GC was streamlined
from JVM 1.5 to 1.6), other VLRT requests arise from
statistical coincidences such as VM consolidation (a kind
of noisy neighbor problem) and cannot be easily “fixed”.
Using very short bottlenecks as a simple, but general
model, we discuss the limitations of some potential so-
lutions (e.g., making queues deeper through additional
threads causes bufferbloat) and describe generic reme-
dies to reduce or bypass the queue amplification pro-
cess (e.g., through priority-based job scheduling to re-
duce queuing of short requests), regardless of the origin
of very short bottlenecks.

The rest of the paper is organized as follows. Sec-
tion 2 shows the emergence of VLRT requests at increas-
ing workload and utilization using the Java GC experi-
ments. Section 3 describes the micro-level event analy-
ses that link the varied causes to VLRT requests. Sec-
tion 4 discusses the remedies for reducing or avoiding
VLRT requests using very short bottlenecks as a general
model. Section 5 summarizes the related work and Sec-
tion 6 concludes the paper.

2 VLRT Requests at Moderate Uti-
lization

Large response time fluctuations (also known as the la-
tency long tail problem) of large scale distributed appli-
cations happen when very long response time (VLRT)
requests arise. VLRT requests have been reported by in-
dustry practitioners [18] and academic researchers [24,
27, 38, 43]. These requests are difficult to study, since
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(a) 9000 clients; the system throughput is 1306 req/s and the
highest average CPU usage among component servers is 61%.
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(b) 12000 clients; the system throughput is 1706 req/s and the
highest average CPU usage among component servers is 81%.

Figure 4: Frequency of requests by their response times at two representative workloads. The system is at
moderate utilization, but the latency long tail problem can be clearly seen.

they happen occasionally and without warning, often at
moderate CPU utilization levels. When running by them-
selves, the VLRT requests change back to normal and re-
turn within a few milliseconds. Consequently, the prob-
lem does not reside within the VLRT requests, but in the
interactions among the system components.

Since VLRT requests arise from system interactions,
usually they are not exactly reproducible at the request
level. Instead, they appear when performance data are
statistically aggregated, as their name “latency long tail”
indicates. We start our study by showing one set of
such aggregated graphs, using RUBBoS [6], a represen-
tative web-facing n-tier system benchmark modeled af-
ter Slashdot. Our experiments use a typical 4-tier con-
figuration, with 1 Apache web server, 2 Tomcat Appli-
cation Servers, 1 C-JDBC clustering middleware, and 2
MySQL database servers (details in Appendix A).

When looking at statistical average metrics such as
throughput, VLRT requests may not become apparent
immediately. As illustration, Figure 1 shows the through-
put and CPU utilization of RUBBoS experiments for
workloads from 1000 to 14000 concurrent clients. The
average CPU utilization of Tomcat and MySQL rise
gradually, as expected. The system throughput grows lin-
early, since all the system components have yet to reach
saturation. Similarly, the aggregate response time graph
(Figure 2) show little change up to 12000 clients. With-
out looking into the distribution of request response time,
one might overlook the VLRT problems that start at mod-
erate CPU utilization levels.

Although not apparent from Figure 1, the percentage
of VLRT requests (defined as requests that take more
than 3 seconds to return in this paper) increases signif-
icantly starting from 9000 clients as shown in Figure 3.
At the workload of 12000 clients, more than 4% of all re-
quests become VLRT requests, even though the CPU uti-
lization of all servers is only 80% (Tomcat and MySQL)
or much lower (Apache and C-JDBC). The latency long
tail problem can be seen more clearly when we plot the

frequency of requests by their response times in Figure 4
for two representative workloads: 9000 and 12000. At
moderate CPU utilization (about 61% at 9000 clients,
Figure 4(a)), VLRT requests appear as a second clus-
ter after 3 seconds. At moderately high CPU utilization
(about 81% at 12000 clients, Figure 4(b)), we see 3 clus-
ters of VLRT requests after 3, 6, and 9 seconds, respec-
tively. These VLRT requests add up to 4% as shown in
Figure 3.

One of the intriguing (and troublesome) aspects of
wide response time fluctuations is that they start to hap-
pen at moderate CPU utilization level (e.g., 61% at 9000
clients). This observation suggests that the CPU (the
critical resource) may be saturated only part of the time,
which is consistent with previous work [38, 40] on very
short bottlenecks as potential causes for the VLRT re-
quests. Complementing a technical problem-oriented de-
scription of very short bottlenecks (Java garbage collec-
tion [38] and anti-synchrony from DVFS [40]), we also
show that VLRT requests are associated with a more fun-
damental phenomenon (namely, very short bottleneck)
that can be described, understood, and remedied in a
more general way than each technical problem.

3 VLRT Requests Caused by Very
Short Bottlenecks

We use a micro-level event analysis to link the causes
of very short bottlenecks to VLRT requests. The micro-
level event analysis exploits the fine-grained measure-
ment data collected in RUBBoS experiments. Specifi-
cally, all messages exchanged between servers are times-
tamped at microsecond resolution. In addition, system
resource utilization (e.g., CPU) is monitored at short time
intervals (e.g., 50ms). The events are shown in a timeline
graph, where the X-axis represents the time elapsed dur-
ing the experiment at fine-granularity (50ms units in this
section).
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(a) Number of VLRT requests counted at every 50ms time win-
dow. Such VLRT requests contribute to bi-modal response time
distribution as shown in Figure 4(a).
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(b) Frequent queue peaks in Apache during the same 10-second
timeframe as in (a). The queue peaks match well with the
occurrence of the VLRT requests in (a). This arises because
Apache drops new incoming packets when the queued requests
exceed the upper limit of the queue, which is imposed by the
server thread pool size (150) and the operating system TCP
stack buffer size (128 by default). Dropped packets lead to TCP
retransmissions (>3s).

Figure 5: VLRT requests (see (a)) caused by queue
peaks in Apache (see (b)) when the system is at work-
load 9000 clients.

3.1 VLRT Requests Caused by Java GC

In our first illustrative case study of very short bottle-
necks, we will establish the link between VLRT requests
shown in Figure 4 to the Java garbage collector (GC) in
the Tomcat application server tier of the n-tier system.
We have chosen Java GC as the first case because it is de-
terministic and easier to explain. Although Java GC has
been suggested as a cause of transient events [38], the
following explanation is the first detailed description of
data flow and control flow that combine into queue am-
plification in an n-tier system. This description is a five-
step micro-event timeline analysis of fine-grained moni-
toring based on a system tracing facility that timestamps
all network packets at microsecond granularity [40]. By
recording the precise arrival and departure timestamps of
each client request for each server, we are able to deter-
mine precisely how much time each request spends in
each tier of the system.

In the first step of micro-event analysis (transient
events), we use fine-grained monitoring data to deter-
mine which client requests are taking seconds to finish
instead of the normally expected milliseconds response
time. Specifically, we know exactly at what time these
VLRT requests occur. A non-negligible number (up to
50) of such VLRT requests appear reliably (even though
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(a) Queue peaks in Apache coincide with the queue peaks in
Tomcat, suggesting push-back wave from Tomcat to Apache.
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(b) Request queue for each Tomcat server (1 and 2). The sum
of the two is the queued requests in the Tomcat tier (see (a)).
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(c) Transient CPU saturations of a Tomcat server coincide with
the queue peaks in the corresponding Tomcat server (see (b)).
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(d) Episodes of Java GC in a Tomcat server coincide with the
transient CPU saturation of the Tomcat server (see (c)).

Figure 6: Queue peaks in Apache (a) due to very short
bottlenecks caused by Java GC in Tomcat (d).

they may not be exactly the same set for different experi-
ments) at approximately every four seconds as measured
from the beginning of each experiment (Figure 5(a)).
The X-axis of Figure 5(a) is a timeline at 50ms inter-
vals, showing the clusters of VLRT requests are tightly
grouped within a very short period of time. Figure 5(a)
shows four peak/clusters of VLRT requests during a 10-
second period of a RUBBoS experiment (workload 9000
clients). Outside of these peaks, all requests return within
milliseconds, consistent with the average CPU utilization
among servers being equal to or lower than 61%.

In the second step of micro-event analysis (retrans-
mitted requests), we show that dropped message pack-
ets are likely the cause of VLRT requests. To make this
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connection, we first determine which events are being
queued in each server. In an n-tier system, we say that
a request is waiting in a queue at a given tier when its
request packet has arrived and a response has not been
returned to an upstream server or client. This situa-
tion is the n-tier system equivalent of having a program
counter entering that server but not yet exited. Using
the same timeframe of Figure 5(a), we plot the request
queue length in the Apache server in Figure 5(b). Fig-
ure 5(b) shows five peak/clusters, in which the number
of queued requests in Apache is higher than 150 for that
time interval. The upper limit of the queued requests is
slightly less than 300, which is comparable to the sum
of thread pool size (150 threads) plus TCP buffer size
of 128. Although there is some data analysis noise due
to the 50ms window size, the number of queued requests
in Apache suggests strongly that some requests may have
been dropped, when the thread pool is entirely consumed
(using one thread per incoming request) and then the
TCP buffer becomes full. Given the 3-second retrans-
mission timeout for TCP (kernel 2.6.32), we believe the
overlapping peaks of Figure 5(a) (VLRT requests) and
Figure 5(b) (queued requests in Apache) make a con-
vincing case for dropped TCP packets causing the VLRT
requests. However, we still need to find the source that
caused the requests to queue in the Apache server, since
Apache itself is not a bottleneck (none of the Apache re-
sources is a bottleneck).

In the third step of micro-event analysis (queue am-
plification), we continue the per-server queue analysis
by integrating and comparing the requests queued in
Apache Figure 5(b) with the requests queued in Tom-
cat. The five major peak/clusters in Figure 6(a) show the
queued requests in both Apache (sharp/tall peaks near the
278 limit) and Tomcat (lower peaks within the sharp/tall
peaks). This near-perfect coincidence of (very regular
and very short) queuing episodes suggests that it is not
by chance, but somehow Tomcat may have contributed
to the queued requests in Apache.

Let us consider more generally the situation in n-tier
systems where queuing in a downstream server (e.g.,
Tomcat) is associated with queuing in the upstream
server (e.g., Apache). In client/server n-tier systems, a
client request is sent downstream for processing, with
a pending thread in the upstream server waiting for the
response. If the downstream server encounters internal
processing delays, two things happen. First, the down-
stream server’s queue grows. Second, the number of
matching and waiting threads in the upstream server also
grows due to the lack of responses from downstream.
This phenomenon, which we call push-back wave, ap-
pears in Figure 6(a). The result of the third step in micro-
event analysis is the connection between long queue in
Apache to queuing in Tomcat due to Tomcat saturation.

In the fourth step of micro-event analysis (very short
bottlenecks), we will link the Tomcat queuing with very
short bottlenecks in which CPU becomes saturated for
a very short time (tens of milliseconds). The first part
of this step is a more detailed analysis of Tomcat queu-
ing. Specifically, the queued requests in the Tomcat tier
(a little higher than 60 in Figure 6(a)), are the sum of
two Tomcat servers. The sum is meaningful since a sin-
gle Apache server uses the two Tomcat servers to pro-
cess the client requests. To study the very short bottle-
necks of CPU, we will consider the request queue for
each Tomcat server (called 1 and 2) separately in Fig-
ure 6(b). At about 0.5 seconds in Figure 6(b), we can
see Tomcat2 suddenly growing a queue that contains 50
requests, due to the concurrency limit of the communica-
tion channel between each Apache process and a Tomcat
instance (AJP [1] connection pool size set to 50).

The second part of the fourth step is a fine-grained
sampling (at 50ms intervals) of CPU utilization of Tom-
cat, shown in Figure 6(c). We can see that Tomcat2
enters a full (100%) CPU utilization state, even though
it is for a very short period of about 300 milliseconds.
This short period of CPU saturation is the very short
bottleneck that caused the Tomcat2 queue in Figure 6(b)
and through push-back wave, the Apache queue in Fig-
ure 6(a)). Similar to the Tomcat2 very short bottleneck
at 0.5 seconds in Figure 6(b), we can see a similar Tom-
cat1 very short bottleneck at 1.5 seconds. Each of these
very short bottlenecks is followed by similar bottlenecks
every four seconds during the entire experiment.

The fifth step of the micro-event analysis (root cause)
is the linking of transient CPU bottlenecks to Java GC
episodes. Figure 6(d) shows the timeline of Java GC,
provided by the JVM GC logging. We can see that both
Tomcat1 and Tomcat2 run Java GC at a regular time in-
terval of about four seconds. The timeline of both figures
shows that the very short bottlenecks in Figure 6(c) and
Java GC episodes happen at the same time throughout
the entire experiment. The experiments were run with
JVM 1.5, which is known to consume significant CPU
resources at high priority during GC. This step shows
that the Java GC caused the transient CPU bottlenecks.

In summary, the 5 steps of micro-event analysis show
the VLRT requests in Figure 4 are due to very short bot-
tlenecks caused by Java GC:

1. Transient events: VLRT requests are clustered
within a very short period of time at about 4-second
intervals throughout the experiment (Figure 5(a)).

2. Retransmitted requests: VLRT requests coincide
with long request queues in the Apache server (Fig-
ure 5(b)) that causes dropped packets and TCP re-
transmission after 3 seconds.

3. Queue amplification: long queues in Apache are
caused by push-back waves from Tomcat servers,
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Workload 6000 8000 10000 12000
requests > 3s 0 0.3% 0.2% 0.7%

Tomcat CPU util. 31% 43% 50% 61%
MySQL CPU util. 44% 56% 65% 78%

Table 1: Percentage of VLRT requests and the re-
source utilization of representative servers as work-
load increases in the SpeedStep case.
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(a) Number of VLRT requests counted at every 50ms time window.
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(b) Frequent queue peaks in Apache during the same 10-second time
period as in (a). Once a queue spike exceeds the concurrency limit,
new incoming packets are dropped and TCP retransmission occurs,
causing the VLRT requests as shown in (a).

Figure 7: VLRT requests (see (a)) caused by queue
peaks in Apache (see (b)) when the system is at work-
load 12000.

where similar long queues form at the same time
(Figure 6(a)).

4. Very short bottlenecks: long queues in Tomcat (Fig-
ure 6(b)) are created by very short bottlenecks (Fig-
ure 6(c)), in which the Tomcat CPU becomes sat-
urated for a very short period of time (about 300
milliseconds).

5. Root cause: The very short bottlenecks coincide ex-
actly with Java GC episodes (Figure 6(d)).

The discussions on the solutions for avoiding VLRT re-
quests and very short bottlenecks are in Section 4.

3.2 VLRT Requests Caused by Anti-
Synchrony from DVFS

The second case of very short bottlenecks was found
to be associated with anti-synchrony between workloads
bursts and CPU clock rate adjustments made by dy-
namic voltage and frequency scaling (DVFS). By anti-
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(a) Queue peaks in Apache coincide with the queue peaks in
MySQL, suggesting the push-back waves from MySQL to Apache.
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(b) Transient CPU saturation periods of MySQL1 coincide with the
queue peaks in MySQL (see (a)).
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(c) The low CPU clock rate of MySQL1 coincides with the transient
CPU saturation periods, suggesting that the transient CPU saturation
is caused by the delay of CPU adapting from a slow mode to a faster
mode to handle a workload burst.

Figure 8: Queue peaks in Apache (see (a)) due to
very short bottlenecks in MySQL caused by the anti-
synchrony between workload bursts and DVFS CPU
clock rate adjustments (see (c)).

synchrony we mean opposing cycles, e.g., CPU clock
rate changed from high to low after idling, but the slow
CPU immediately meets a burst of new requests. Pre-
vious work [18, 39] have suggested power saving tech-
niques such as DVFS being a potential source for VLRT
requests. The following micro-event analysis will ex-
plain in detail the queue amplification process that links
anti-synchrony to VLRT requests through very short bot-
tlenecks.

In DVFS experiments, VLRT requests start to appear
at 8000 clients (Table 1) and grow steadily with increas-
ing workload and CPU utilization, up to 0.7% of all re-
quests at 12000 clients with 78% CPU in MySQL. These
experiments (similar to [39]) had the same setup as Java
GC experiments in Section 3.1, with two modifications.
First, the JVM in Tomcat was upgraded from 1.5 to 1.6
to reduce the Java GC demands on CPU [3], thus avoid-
ing the very short bottlenecks described in Section 3.1
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due to Java GC. Second, the DVFS control (default Dell
BIOS level) in MySQL is turned on: Intel Xeon CPU
(E5607) supporting nine CPU clock rates, with the slow-
est (P8, 1.12 GHz) nearly half the speed of the highest
(P0, 2.26GHz).

In the first step of micro-event analysis (transient
events) for DVFS experiments, we plot the occurrence
of VLRT requests (Figure 7(a)) through the first 10-
second of experiment with workload of 12000 clients.
Three tight clusters of VLRT requests appear, showing
the problem happened during a very short period of time.
Outside of these tight clusters, all requests return within
a few milliseconds.

In the second step of micro-event analysis (dropped
requests), the request queue length in Apache over the
same period of time shows a strong correlation between
peaks of Apache queue (Figure 7(b)) and peaks in VLRT
requests (Figure 7(a)). Furthermore, the three high
Apache queue peaks rise to the sum of Apache thread
pool size (150) and its TCP buffer size (128). This ob-
servation is consistent with the first illustrative case, sug-
gesting dropped request packets during those peak pe-
riods, even though Apache is very far from saturation
(46% utilization).

In the third step of micro-event analysis (queue am-
plification), we establish the link between the queuing
in Apache with the queuing in downstream servers by
comparing the queue lengths of Apache, Tomcat, and
MySQL in Figure 8(a). We can see that peaks of Apache
queue coincide with peaks of queue lengths in Tomcat
and MySQL. A plausible hypothesis is queue amplifica-
tion that starts in MySQL, propagating to Tomcat, and
ending in Apache. Supporting this hypothesis is the
height of queue peaks for each server. MySQL has 50-
request peaks, which is the maximum number of requests
sent by Tomcat, with database connection pool size of 50.
Similarly, a Tomcat queue is limited by the AJP connec-
tion pool size in Apache. As MySQL reaches full queue,
a push-back wave starts to fill Tomcat’s queues, which
propagates to fill Apache’s queue. When Apache’s queue
becomes full, dropped request messages create VLRT re-
quests.

In the fourth step of micro-event analysis (very short
bottlenecks), we will link the MySQL queue to very short
bottlenecks with a fine-grained CPU utilization plot of
MySQL server (Figure 8(b)). A careful comparative ex-
amination of Figure 8(b) and Figure 8(a) shows that short
periods of full (100%) utilization of MySQL coincide
with the same periods where MySQL reaches peak queue
length (the MySQL curve in Figure 8(a)). For simplicity,
Figure 8(b) shows the utilization of one MySQL server,
since the other MySQL shows the same correlation.

The fifth step of the micro-event analysis (root cause)
is the linking of transient CPU bottlenecks to the anti-

synchrony between workload bursts and CPU clock rate
adjustments. The plot of CPU utilization and clock rate
of MySQL server shows that CPU saturation leads to
a rise of clock rate and non-saturation makes the clock
rate slow down (Figure 8(c)). While this is the expected
and appropriate behavior of DVFS, a comparison of Fig-
ure 8(a), Figure 8(b), and Figure 8(c) shows that the
MySQL queue tends to grow while clock rate is slow
(full utilization), and fast clock rates tend to empty the
queue and lower utilization. Anti-synchrony becomes
a measurable issue when the DVFS adjustment periods
(500ms in Dell BIOS) and workload bursts (default set-
ting of RUBBoS) have similar cycles, causing the CPU
to be in the mismatched state (e.g., low CPU clock rate
with high request rate) for a significant fraction of time.

In summary, the 5 steps of micro-event analysis show
the VLRT requests in Figure 7(a) are due to very short
bottlenecks caused by the anti-synchrony between work-
load bursts and DVFS CPU clock rate adjustments:

1. Transient events: VLRT requests are clustered
within a very short period of time (three times in
Figure 7(a)).

2. Retransmitted requests: VLRT requests coincide
with periods of long request queues that form in the
Apache server (Figure 7(b)) causing dropped pack-
ets and TCP retransmission.

3. Queue amplification: The long queues in Apache
are caused by push-back waves from MySQL and
Tomcat, where similar long queues form at the same
time (Figure 8(a)).

4. Very short bottlenecks: The long queue in MySQL
(Figure 8(a)) is created by very short bottlenecks
(Figure 8(b)), in which the MySQL CPU becomes
saturated for a short period of time (ranging from
300 milliseconds to slightly over 1 second).

5. Root cause: The very short bottlenecks are caused
by the anti-synchrony between workload bursts and
DVFS CPU clock rate adjustments (Figure 8(c)).

3.3 VLRT Requests Caused by Interfer-
ences among Consolidated VMs

The third case of very short bottlenecks was found to
be associated with the interferences among consolidated
VMs. VM consolidation is an important strategy for
cloud service providers to share infrastructure costs and
increase profit [12, 21]. An illustrative win-win scenario
of consolidation is to co-locate two independent VMs
with bursty workloads [28] that do not overlap, so the
shared physical node can serve each one well and in-
crease overall infrastructure utilization. However, sta-
tistically independent workloads tend to have somewhat
random bursts, so the bursts from the two VMs some-
times alternate, and sometimes overlap. The interfer-
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ences among co-located VMs is also known as the “noisy
neighbors” problem. The following micro-event analy-
sis will explain in detail the queue amplification process
that links the interferences among consolidated VMs to
VLRT requests through very short bottlenecks.

The experiments that study the interferences between
two consolidated VMs consist of two RUBBoS n-tier ap-
plications, called SysLowBurst and SysHighBurst (Fig-
ure 9). SysLowBurst is very similar to the 1/2/1/2 config-
uration of previous experiments on Java VM and DVFS
(Sections 3.1 and 3.2), while SysHighBurst is a sim-
plified 1/1/1 configuration (one Apache, one Tomcat,
and one MySQL). The only shared node runs VMware
ESXi, with the Tomcat in SysLowBurst co-located with
MySQL in SysHighBurst on the same CPU core. All
other servers run on dedicated nodes. The experiments
use JVM 1.6 and CPUs with disabled DVFS, to elimi-
nate those two known causes of very short bottlenecks.

The experiments evaluate the influence of bursty
workloads by using the default RUBBoS workload gen-
erator (requests generated following a Poisson distribu-
tion parameterized by the number of clients) in SysLow-
Burst, and observing the influence of increasingly bursty
workload injected by SysHighBurst. The workload gen-
erator of SysHighBurst is enhanced with an additional
burstiness control [29], called index of dispersion (ab-
breviated as I). The workload burstiness I = 1 is cal-
ibrated to be the same as the default RUBBoS setting,
and a larger I generates a burstier workload (for each
time window, wider variations of requests created).

The baseline experiment runs SysLowBurst by itself
at a workload of 14000 clients (no consolidation), with
the result of zero VLRT requests (Table 2, line #1). The
consolidation is introduced by SysHighBurst, which has
a very modest workload of 400 clients, which is about
3% of SysLowBurst. However, the modest workload of
SysHighBurst has an increasing burstiness from I = 1 to
I = 400, when most of SysHighBurst workload become
batched into short bursts. The lines #2 through #5 of Ta-
ble 2 shows the increasing number of VLRT requests as I
increases. We now apply the micro-event timeline anal-
ysis to confirm our hypothesis that the VLRT requests
are caused by the interferences between the Tomcat2 in
SysLowBurst and MySQL in SysHighBurst.

In the first step of micro-event analysis (transient
events), we plot the occurrence of the VLRT requests of
SysLowBurst (Figure 10(a)) during a 15-second of ex-
periment when the consolidated SysHighBurst has I =
100 bursty workload. We can see three tight clusters (at
2, 5, and 12 seconds) and 1 broader cluster (around 9
seconds) of VLRT requests appear, showing the problem
happened during a relatively short period of time. Out-
side of these tight clusters, all requests return within a
few milliseconds.

Fronts 
tiers

MySQL

Apache 
server

Tomcat1 MySQL1

Tomcat2

CJDBC

MySQL2

SysHighBurst

SysLowBurst

Co-locate SysLowBurst-
Tomcat2 with SysHighBursty-
MySQL on the same CPU core 
of a physical machine

Figure 9: Consolidation strategy between SysLow-
Burst and SysHighBurst; the Tomcat2 in SysLow-
Burst is co-located with MySQL in SysHighBurst.

# SysLowBurst SysHighBurst
WL requests Tomcat2- WL Burstiness MySQL-

> 3s CPU (%) level CPU (%)
1 14000 0 74.1 0 Null 0
2 14000 0.1% 74.9 400 I=1 10.2
3 14000 2.7% 74.7 400 I=100 10.6
4 14000 5.0% 75.5 400 I=200 10.5
5 14000 7.5% 75.2 400 I=400 10.8

Table 2: Workload of SysLowBurst and SysHigh-
Burst during consolidation. SysLowBurst is serving
14000 clients with burstiness I = 1 and SysHighBurst
is serving 400 clients but with increasing burstiness
levels. As the burstiness of SysHighBurst’s workload
increases, the percentage of VLRT requests in Sys-
LowBurst increases.

In the second step of micro-event analysis (dropped re-
quests), we found the request queue in the Apache server
of SysLowBurst has grown (Figure 10(b)) at the same
time as the VLRT requests’ peak times (Figure 10(a)).
We will consider the two earlier peaks (at 2 and 5 sec-
onds) first. These peaks (about 278, sum of thread pool
size and TCP buffer size) are similar to the corresponding
previous figures (Figure 5(b) and 7(b)), where requests
are dropped due to Apache thread pool being consumed,
followed by TCP buffer overflow. The two later peaks
(centered around 9 and 12 seconds) are higher (more than
400), reflecting the creation of a second Apache process
with another set of thread pools (150). The second pro-
cess is spawned only when the first thread pool is fully
used for some time. We found that packets get dropped
during the higher peak periods for two reasons: during
the initiation period of the second process (using non-
trivial CPU resources, although for a very short time) and
after the entire second thread pool has been consumed in
a situation similar to earlier peaks.

In the third step of micro-event analysis (queue ampli-
fication), we establish the link between queues in Apache
with queues in downstream servers by comparing the
queue lengths of Apache and Tomcat in Figure 11(a). We
can see that the four peaks in Tomcat coincide with the
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(b) Queue peaks in Apache coincide with the occurrence of the
clustered VLRT requests (see (a)), suggesting those VLRT requests
are caused by the queue peaks in Apache. Different from Fig-
ure 5(b) and 7(b), the Apache server here is configured to have
two processes, each of which has its own thread pool. The second
process is spawned only when the first thread pool is fully used.
However, requests still get dropped when the first thread pool and
the TCP buffer are full (at time marker 2 and 5).

Figure 10: VLRT requests (see (a)) caused by queue
peaks in Apache (see (b)) in SysLowBurst when the
collocated SysHighBurst is at I = 100 bursty work-
load.

queue peaks in Apache (reproduced from the previous
figure), suggesting that queues in Tomcat servers have
contributed to the growth of queued requests in Apache,
since the response delays would prevent Apache to con-
tinue. Specifically, the maximum number of requests be-
tween each Apache process and each Tomcat is the AJP
connection pool size (50 in our experiments). As each
Apache process reaches its AJP connection pool size and
TCP buffer filled, newly arrived packets are dropped and
retransmitted, creating VLRT requests.

In the fourth step of micro-event analysis (very short
bottlenecks), we will link the Tomcat queues with the
very short bottlenecks in which CPU becomes saturated
for a very short period (Figure 11(b)). We can see that the
periods of CPU saturation in Tomcat of SysLowBurst co-
incide with the Tomcat queue peaks (the Tomcat curve in
Figure 11(a)), suggesting that the queue peaks in Tomcat
are caused by the transient CPU bottlenecks.

The fifth step of the micro-event analysis (root cause)
is the linking of transient CPU bottlenecks to the per-
formance interferences between consolidated VMs. This
is illustrated in Figure 11(c), which shows the Tomcat2
CPU utilization in SysLowBurst (reproduced from Fig-
ure 11(b)) and the MySQL request rate generated by
SysHighBurst. We can see a clear overlap between the
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(a) Queue peaks in Apache coincide with those in Tomcat, suggest-
ing the pushback waves from Tomcat to Apache in SysLowBurst.
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(b) Transient saturation periods of SysLowBurst-Tomcat2 CPU co-
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(c) The workload bursts for SysHighBurst coincide with the transient
CPU saturation periods of SysLowBurst-Tomcat2, indicating severe
performance interferences between consolidated VMs.

Figure 11: Very short bottlenecks caused by the in-
terferences among consolidated VMs lead to queue
peaks in SysLowBurst-Apache. The VM interferences
is shown in (b) and (c).

Tomcat CPU saturation periods (at 2, 5, 7-9, and 12 sec-
onds) and the MySQL request rate jumps due to high
workload bursts. The overlap indicates the very short
bottlenecks in Tomcat are indeed associated with work-
load bursts in SysHighBurst, which created a competi-
tion for CPU in the shared node, leading to CPU satura-
tion and queue amplification.

In summary, the 5 steps of micro-event analysis show
the VLRT requests in Figure 10(a) are due to very short
bottlenecks caused by the interferences among consoli-
dated VMs:

1. Transient events: VLRT requests appear within a
very short period of time (4 times in Figure 10(a)).

2. Retransmitted requests: The VLRT requests corre-
spond to periods of similar short duration, in which
long request queues form in Apache server (Fig-
ure 10(b)), causing dropped packets and TCP re-
transmission after 3 seconds.

3. Queue amplification: The long queues in Apache
are caused by push-back waves from Tomcat, where
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similar long queues form at the same time (Fig-
ure 11(a)).

4. Very short bottlenecks: The long queues in Tomcat
(Figure 11(a)) are created by very short bottlenecks
(Figure 11(b)), in which the Tomcat CPU becomes
saturated for a short period of time.

5. Root cause: The very short bottlenecks are caused
by the interferences among consolidated VMs (Fig-
ure 11(c)).

4 Remedies for VLRT Requests
and Very Short Bottlenecks

4.1 Specific Solutions for Each Cause of
VLRT Requests

When Java GC was identified as a source of VLRT re-
quests [38], one of the first questions asked was whether
we could apply a “bug fix” by changing the JVM 1.5
GC algorithm or implementation. Indeed this happened
when JVM 1.6 replaced JVM 1.5. The new GC im-
plementation was about an order of magnitude less de-
manding of CPU resources, and its impact became less
noticeable at workloads studied in Section 3.1. A sim-
ilar situation arose when DVFS [39] was confirmed as
another source of VLRT requests due to anti-synchrony
between workload bursts and DVFS power/speed adjust-
ments. Anti-synchrony could be avoided by changing
(reducing) the control loop to adjust CPU clock rate more
often, and thus disrupt the anti-synchrony for the default
RUBBoS workload bursts. Finally, interferences among
consolidated VMs may be prevented by specifying com-
plete isolation among the VMs, disallowing the sharing
of CPU resources. Unfortunately, the complete isolation
policy also defeats the purpose of sharing, which is to
improve overall CPU utilization through sharing [23].

As new sources of VLRT requests such as VM con-
solidation (Section 3.3) continue to be discovered, and
suggested by previous work [18, 30], the “bug fix” ap-
proach may be useful for solving specific problems, but
it probably would not scale, since it is a temporary rem-
edy for each particular set of configurations with their
matching set of workloads. As workloads and system
components (both hardware and software) evolve, VLRT
requests may arise again under a different set of config-
uration settings. It will be better to find a more general
approach to resolve entire classes of problems that cause
VLRT requests.

4.2 Solutions for Very Short Bottlenecks
We will discuss potential and general remedies using
very short bottlenecks as a simple model, regardless of

what caused the VLRT requests (three very different
causes of very short bottlenecks were described in Sec-
tion 3). For this discussion, a very short bottleneck is a
very short period of time (from tens to hundreds of mil-
liseconds) during which the CPU remains busy and thus
continuously unavailable for lower priority threads and
processes at kernel, system, and user levels. The useful-
ness of the very short bottleneck model in the identifica-
tion of causes of VLRT requests has been demonstrated
in Section 3, where VLRT requests were associated with
very short bottlenecks in three different system layers.

In contrast to the effect-to-cause analysis in Section 3,
the following discussion of general remedies will follow
the chronological order of events, where very short bot-
tlenecks happen first, causing queue amplification, and
finally retransmitted VLRT requests. For concreteness,
we will use the RUBBoS n-tier application scenario;
the discussion applies equally well to other mutually-
dependent distributed systems.

First, we will consider the disruption of very short bot-
tleneck formation. From the description in Section 3,
there are several very different sources of very short bot-
tlenecks, including system software daemon processes
(e.g., Java GC), predictable control system interferences
(e.g., DVFS), and unpredictable statistical interferences
(e.g., VM co-location). A general solution that is in-
dependent of any causes would have to wait for a very
short bottleneck to start, detect it, and then take remedial
action to disrupt it. Given the short lifespan of a very
short bottleneck, its reliable detection becomes a signif-
icant challenge. Using a control system terminology, if
we trigger the detection too soon ((e.g., a few millisec-
onds)), we have fast but unstable response. Similarly, if
we wait too long in the control loop (e.g., serveral sec-
onds), we may have more stable response but the dam-
age caused by very short bottleneck may have already
been done. This argument does not prove that the cause-
agnostic detection and disruption of a very short bottle-
neck is impossible, but it is a serious research challenge.

Second, we will consider the disruption of the queue
amplification process. A frequently asked question is
whether lengthening the queues in servers (e.g., increas-
ing TCP buffer size or thread pool size in Apache and
Tomcat) can disrupt the queue amplification process.
There are several reasons for large distributed systems to
limit the depth of queues in components. At the network
level (e.g., TCP), large network buffer size causes prob-
lems such as bufferbloat [20], leading to long latency and
poor system performance. At the software systems level,
over allocation of threads in web servers can cause sig-
nificant overhead [41, 42], consuming critical bottleneck
resources such as CPU and memory and degrade sys-
tem performance. Therefore, the queue lengths in servers
should remain limited.
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On the other hand, the necessity for limitation in server
queues does not mean that queue amplification is in-
evitable. An implicit assumption in queue amplifica-
tion is the synchronous request/response communication
style in current n-tier system implementations (e.g., with
Apache and Tomcat). It is possible that asynchronous
servers (e.g., nginx [4]) may behave differently, since it
does not use threads to wait for responses and therefore
it may not propagate the queuing effect further upstream.
This interesting area (changing the architecture of n-tier
systems to reduce mutual dependencies) is the subject of
ongoing active research.

Another set of alternative techniques have been sug-
gested [18] to reduce or bypass queue-related blocking.
An example is the creation of multiple classes of re-
quests [38], with a differentiated service scheduler to
speed up the processing of short requests so they do not
have to wait for VLRT requests. Some applications al-
low semantics-dependent approaches to reduce the la-
tency long tail problem. For example, (read-only) web
search queries can be sent to redundant servers so VLRT
requests would not affect all of the replicated queries.
These alternative techniques are also an area of active re-
search.

Third, we will consider the disruption of retransmitted
requests due to full queues in servers. Of course, once a
packet has been lost it is necessary to recover the infor-
mation through retransmission. Therefore, the question
is about preventing packet loss. The various approaches
to disrupt queue amplification, if successful, can also
prevent packet loss and retransmission. Therefore, we
consider the discussion on disruption of queue amplifi-
cation to subsume the packet loss prevention problem. A
related and positive development is the change of the de-
fault TCP timeout period from 3 seconds to 1 second in
the Linux kernel [22].

Fourth, we return to the Gartner report on average data
center utilization of 18% [37]. An empirically observed
condition for the rise of very short bottlenecks is a mod-
erate or higher average CPU utilization. In our exper-
iments, very short bottlenecks start to happen at around
40% average CPU utilization. Therefore, we consider the
reported low average utilization as a practical (and ex-
pensive) method to avoid the very short bottleneck prob-
lem. Although more research is needed to confirm this
conjecture, low CPU utilization levels probably help pre-
vent very short bottleneck formation as well as queue for-
mation and amplification.

5 Related Work

Latency has received increasing attention in the evalua-
tion of quality of service provided by computing clouds

and data centers [10, 27, 31, 35, 38, 40]. Specifically,
the long-tail latency is of particular concern for mission-
critical web-facing applications [8, 9, 18, 26, 43]. On the
solution side, many previous research [26,27] focuses on
a single server/platform, not on multi-tier systems which
have more complicated dependencies among component
servers. Dean et al. [18] described their efforts to by-
pass/mitigate tail latency in Google’s interactive applica-
tions. These bypass techniques are effective in specific
applications or domains, contributing to an increasingly
acute need to improve our understanding of the general
causes for the VLRT requests.

Aggregated statistical analyses over fine-grained mon-
itored data have been used to infer the appearance and
causes of long-tail latency [17, 25, 27, 40]. Li et al. [27]
measure and compare the changes of latency distribu-
tions to study hardware, OS, and concurrency-model in-
duced causes of tail latency in typical web servers ex-
ecuting on multi-core machines. Wang et al. [40] pro-
pose a statistical correlation analysis between a server’s
fine-grained throughput and concurrent jobs in the server
to infer the server’s real-time performance state. Co-
hen [17] use a class of probabilistic models to corre-
late system-level metrics and threshold values with high-
level performance states. Our work leverages the fine-
grain data, but we go further in using micro-level time-
line event analysis to link the various causes to VLRT
requests.

Our work makes heavy use of data from fine-grained
monitoring and profiling tools to help identify causes as-
sociated with the performance problem [2,5,7,13,14,25,
32, 34]. For example, Chopstix [13] continuously col-
lects profiles of low-level OS events (e.g., scheduling, L2
cache misses, page allocation, locking) at the granularity
of executables, procedures and instruction. Collectl [2]
provides the ability to monitor a broad set of system level
metrics such as CPU and I/O operations at millisecond-
level granularity. We use these tools when applicable.

Techniques based on end-to-end request-flow tracing
have been proposed for performance anomaly diagno-
sis [7, 11, 16, 19, 25, 33, 36], but usually for systems with
low utilization levels. X-ray [11] instruments binaries
as applications execute and uses dynamic information
flow tracking to estimate the likelihood that a block was
executed due to each potential root cause for the per-
formance anomaly. Fay [19] provides dynamic tracing
through use of runtime instrumentation and distributed
aggregation within machines and across clusters for win-
dows platform. Aguilera et al. [7] propose a statistical
method to infer request trace between black boxes in a
distributed system and attribute delays to specific nodes.
BorderPatrol [25] obtains request traces more precisely
using active observation which carefully modifies the
event stream observed by component servers.
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Figure 12: Details of the experimental setup.

6 Conclusion
Applying a micro-level event analysis on extensive ex-
perimental data collected from fine-grain monitoring of
n-tier application benchmarks, we demonstrate that the
latency long tail problem can have several causes at three
system layers. Specifically, very long response time
(VLRT) requests may arise from CPU DVFS control at
the architecture layer (Section 3.2), Java garbage collec-
tion at the system software layer (Section 3.1), and in-
terferences among virtual machines (VM) in VM con-
solidation at the VM layer (Section 3.3). Despite their
different origins, these phenomena can be modeled and
described as very short bottlenecks (tens to hundreds of
milliseconds). The micro-level event analysis shows the
VLRT requests are coincidental to very short bottlenecks
in various servers, which in turn amplify queuing in up-
stream servers, quickly leading to TCP buffer overflow
and request retransmission, causing VLRT requests of
several seconds.

We discuss several approaches to remedy the emer-
gence of VLRT requests, including cause-specific “bug-
fixes” (Section 4.1) and more general solutions to re-
duce queuing based on the very short bottleneck model
(Section 4.2) that will work regardless of the origin of
VLRT requests. We believe that our study of very short
bottlenecks uncovered only the “tip of iceberg”. There
are probably many other important causes of very short
bottlenecks such as background daemon processes that
cause “multi-millisecond hiccups” [18]. Our discussion
in Section 4 suggests that the challenge to find effective
remedies for very short bottlenecks has only just begun.

7 Acknowledgement
We thank the anonymous reviewers and our shepherd,
Liuba Shrira, for their feedback on improving this pa-
per. This research has been partially funded by National
Science Foundation by CNS/SAVI (1250260, 1402266),
IUCRC/FRP (1127904), CISE/CNS (1138666), NetSE
(0905493) programs, and gifts, grants, or contracts from

Fujitsu, Singapore Government, and Georgia Tech Foun-
dation through the John P. Imlay, Jr. Chair endowment.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation or other funding agencies and com-
panies mentioned above.

A Experimental Setup

We adopt the RUBBoS standard n-tier benchmark, based
on bulletin board applications such as Slashdot [6].
RUBBoS can be configured as a three-tier (web server,
application server, and database server) or four-tier (ad-
dition of clustering middleware such as C-JDBC [15])
system. The workload consists of 24 different web inter-
actions, each of which is a combination of all process-
ing activities that deliver an entire web page requested
by a client, i.e., generate the main HTML file as well as
retrieve embedded objects and perform related database
queries. These interactions aggregate into two kinds of
workload modes: browse-only and read/write mixes. We
use browse-only workload in this paper. The closed-
loop workload generator of this benchmark generates a
request rate that follows a Poisson distribution parame-
terized by a number of emulated clients. Such workload
generator has a similar design as other standard n-tier
benchmarks such as RUBiS, TPC-W, Cloudstone etc.

We run the RUBBoS benchmark on our virtualized
testbed. Figure 12 outlines the software components,
ESXi host and virtual machine (VM) configuration, and a
sample topology used in the experiments. We use a four-
digit notation #W/#A/#C/#D to denote the num-
ber of web servers (Apache), application servers, cluster-
ing middleware servers (C-JDBC), and database servers.
Figure 12(c) shows a sample 1/2/1/2 topology. Each
server runs on top of one VM. Each ESXi host runs the
VMs from the same tier of the application. Apache and
C-JDBC are deployed in type “L” VMs to avoid bottle-
necks in load-balance tiers.
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